
d c
C-0 ?TO

AFATL-TR-88-117, VOL II

Program EAGLE User's Manual

Vol II-Surface Generation Code

AD-A204 142
Joe F Thompson
Boyd Gatlin

DEPARTMENT OF AEROSPACE ENGINEERING
MISSISSIPPI STATE UNIVERSITY
DRAWER A
MISSISSIPPI STATE, MS 39762 DTIC

- OCT1 21988

SEPTEMBER 1988

INTERIM REPORT FOR PERIOD OCTOBER 1986-SEPTEMBER 1988

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

AIR FORCE ARMAMENT LABORATORY
Air Force Systems Command I United States Air Force IEglin Air Force Base, Florida

88 1011 225

NOTICE

When Government drawings, specifications, or other data are used for
any purpose other than in connection with a definitely Government-related
procurement, the United States Government incurs no responsibility nor any
obligation whatsoever. The fact that the Government may have formulated
or in any way supplied the said drawings, specifications, or other data,
is not to be regarded by implication or otherwise in any manner construed,
as licensing the holder, or any other person or corporation; or as conveying
any rights or permission to manufacture, use, or sell any patented invention
that may in any way be related thereto.

The Public Affairs Office has reviewed this report, and it is releas-
able to the National Technical Information Service (NTIS), where it will be
available to the general public, including foreign nationals.

This technical report has been reviewed and is approved for publication.

FOR THE COMMANDER
/

STEPHEN C. KORN
Technical Director, Aeromechanics Division

Please do not request copies of this report from the Air Force Armament
Laboratory. Copies may be obtained from DTIC. Address your request for
additional copies to:

Defense Technical Information Center
Cameron Station
Alexandria, VA 22304-6145

If your address has changed, if you wish to be removed from our mailing
list, or if your organization no longer employs the addressee, please notify
AFATL/FXA , Eglin AFB FL 32542-5434, to help us maintain a current mailing
list.

Copies of this report should not be returned unless return is required
by security considerations, contractual obligations, or notice on a specific
document.

• , i l i ll I I I

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

E IO Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188

la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

Unclassified

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION IAVAILABILITY OF REPORT

Approved for Public Release, distribution is
2b. DECLASSIFICATION /DOWNGRADING SCHEDULE unl imi ted.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

AFATL-TR-88-117, VOL II

6a. NAME OF PERFORMING ORGANIZATION I 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Dept of Aerospace Engineering (If applicable) Aerodynamics Branch
Mississippi State University Aeromechanics Division

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS(City; State, and ZIP Code)

Drawer A Air Force Armament Laboratory
Mississippi State University MS 39762 Eglin Air Force Base FL 32542-5434

8a. NAME OF FUNDING/SPONSORING ' 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION Aerodynamics Brn (If applicable)

Avromechanics Division AFATLIFXA F08635-84-C-0228

8c. ADDRESS (C/ty, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
Air Force Armament Laboratory PROGRAM PROJECT TASK WORK UNIT
Eglin Air Force Base FL 32542-5434 ELEMENT NO. NO. I NO.

62602F 2567 I 03 08
1. TITLE (Include Security Classification)

Program EAGLE User's Manual, Volume II: Surface Generation Code
12. PERSONAL AUTHOR(S)
Joe E. Thompson, Boyd Gatlin

13a. TYPE OF REPORT 13b. TIME COVERED 114. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT

Interim I FROM Oct 86 TOSe.0__8 September 1988 268
16. SUPPLEMENTARY NOTATION This Volume is a joint in-house and contractor effort. Therefore, it
is in contractor format.
Availability of report is specified on verso f front rover.
17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP Numerical Grid Generation

01 01 Surface Generation
I Boundary - Conformal

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

This report provides both a user's manual and a detailed description of a general surface
code for the construction of boundary surface input to a grid generation code. This code
g(ierates various forms of curved surfaces and performs the manipulation of such surfaces
necessary for assembly into a composite structure for boundaries of general three-dimensional
regions.

20 DISTRIBUTION/ AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

0 UNCLASSIFIED/UNLIMITED [n SAME AS RPT. C1 DTIC USERS UNCLASSIFIED

22a NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (include Area Code) 22c OFFICE SYMBOL

John R. Cipolla (904) 882-3124 1 AFATL/FXA

DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

SU4ARY

This. volume serves both as a user's manual (Part I) and a detailed

documentation of the operation (Part II) for the boundary code, which

generates boundary surfaces for input to the grid code (Volume III).

This boundary code can generate surfaces or distribute points on input

surfaces. It can also perform various geometric manipulations, such as

transformations and scaling, on surfaces.

Accession For

DT!e T. [

I .. . , :, .1 nc* / (Jr
Otst i S;ic-/I

iii/iv (Blank)

PREFACE

Volume II of a four-volume set documents the usage of Program EAGLE (Eglin

Arbitrary Geometry ImpLicit Euler) to generate the surfaces describing the

computational region. The surface generation system serves as a front-end to

the grid generation system (Volume III), generating surfaces (curves) to be

input to the grid system as segments of the boundary region within which the

grid is to be constructed.

This report was prepared by Drs Joe F. Thompson and Boyd Gatlin of

Mississippi State University (MSU), Starkville, MS. The work was performed

under Work Unit 25670308 from I October 1986 to 30 September 1988.

The principal investigator of the surface and grid generation theory has

been Dr Joe F. Thompson of MSU. The principal investigators of the flow code

theory have been Dr David L. Whitfield of MSU, and Dr Dave M. Belk and Mr L.

Bruce Simpson of the Computational Fluid Dynamics Section (AFATL/FXA). Capt

Jon S. Mounts of the Computational Fluid Dynamics Section (AFATL/FXA) has

increased the utility of the flow code through user-oriented inputs and

outputs, extensive error checking, and calculation of component forces and

moments.

The program manager for the development of Program EAGLE has been

Dr Lawrence E. Lijewski of the Computational Fluid Dynamics Section.

" ' ' , i i l l I I I

ACKNOWLEDGEMENT

This project has involved cooperative efforts between the contractor
and the sponsor, and Dr Lawrence Lijewski of Eglin Air Force Base has
contributed significantly both through direction and involvement. Codes of
this size evolve as usage uncovers problems and new requirements. In this
regard, Lt Agusto Martinez has been instrumental, and was also heavily
involved in the incorporation of the use of the solid state disk. Dr Dave
Belk, Mr L. Bruce Simpson, Mr Yen Tu, Mr John Cipolla, Mr Lynn Lewis, Capt
Jon Mounts, and Lt Montgomery Hughson of Eglin have also contributed.
Graduate students Yeon Seok Chae, Col Hyun Jun Kim, and Maj Yong Hyun Yoon
of Mississippi State University have contributed significantly to the
checkout of these codes. Mr Chae did the artwork. Finally, Mrs Susan
Triplett Price of Mississippi State did all the typing with competence,
dedication, and extra hours.

This effort was conducted during the period I October 1986 to

30 September 1988 for the Air Force Armament Laboratory, Eglin Air Force
Base, FL 32542-5434, under Contract FO8635-84-C-0228.

vi

TABLE OF CONTENTS

PART I - USER'S MANUAL

A. INTRODUCTION 7

Operations List 9

B. COMMON FEATURES............... 10

1. Adjustable Dimension Parameters 10
2. Placing a Surface(Ourve) on Core or File Storage 11
3. Retrieving a Surface(Curve) from Core or File Storage . . . 13
4. Reading a Surface(Curve) 15
5. Printing and/or Plotting a Surface(Curve) 16
6. Setting a Point Distribution with Specified Spacings. . .. 18
7. Use of Internally Calculated Values 21
8. Curves on Curved Surfaces 22
9. Numbered Points 23

10. Spacing from Existing Curve 23
11. Scratch Files 24

C. GENERATION OF CURVES 25

1. Plane Conic-Section Curves 25
2. Cubic Space Curve Between Two Points 29
3. Cubic Space Curve Connecting Two Surfaces (Curves) 31
4. Straight Line 34
5. Generation of a Curve as the Intersection of Two Surfaces . 36

D. GENERATION OF SURFACES 37

1. Flat Conic-Section Surfaces 37
2. Conic-Section Surfaces 39
3. Cubic Patch Surface 45
4. Generation of a Surface by Rotation of a Curve 48
5. Generation of a Surface by Stacking Curves 52
6. Generation of a Surface by Blending Curves 55
7. Generation of a Surface by Transfinite Interpolation. . . 58
8. Generation of a Tensor-Product Surface (Coon's Patch) . . 59
9. Generation of a Surface from a Surface-Parametric

Coordinate Lattice 60

E. AUXILIARY OPERATIONS 62

1. Distributing Points on a Curve with Specified Spacing . . 62
2. Distributing Points on a Curve According to Curvature . . . 63
3. Scaling a Surface(Curve) 63

vii

4. Transforming a Surface(Curve) 64
5. Designating a Curve to be Rotated, Stacked, or Blended.. 67
6. Designating a Curve as the Axis Curve of a Stack 67
7. Designating a Curve as an Edge Curve for a Transfinite

Interpolation Surface 68

8. Setting a Corner for a Tensor-Product Surface 69
9. Construction of a General Tab Curve 70

10. Construction of an Edge Tab Curve 72
11. Construction of a Tab Point 74
12. Direct Setting of a Tab Point 76
13. Designation of an End Point 77
14. Designation of an End Point and Slope Vector 78
15. Splining a Surface(Curve) 78
16. Placing a Surface(Curve) in Current Position 79
17. Storing a Surface(Curve) 79
18. Reversing Point Progression and/or Surface Dimensions .. 79
19. Concatenation of Surfaces(Curves) 81
20. Duplication of a Surface(Curve) Segment 82

21. Combining Cores and/or Files onto One Core or File 83
22. Copying Cores or Files 85
23. Setting an Input Value as a Sum or Product 85
24. Projection on a Plane 86
25. Cartesian Coordinates at Numbered Points 87
26. Surface Parametric Coordinates of a Surface(Curve) 87
27. Distributing Points on a Surface with Specified Spacing 88

F. OTHER OPERATIONS 89

1. Relative Distribution 89

2. Arc Length on a Curve 89
3. Unit Tangent and Principal Normal, Curvature, and Arc

Length on a Curve 90
4. Unit Tangents and Normal on a Surface 90

G. ERROR MESSAGES 92

PART II - CODE OPERATION

A. PARAMETERS AND VARIABLES 115

1. Primary Arrays 115
2. Surface(Curve) Parameters 116
3. I/O Parameters 118
4. Distribution Parameters 119
5. Spline Parameters 120

B. INPUT AND SETUP 121

C. RESPONSES TO NAMELIST/INPUT 124

1. Storing, printing, and plotting a surface 124

2. Retrieval of a surface 125

3. Relative distributions 126

4. Surface(Curve) Spline 127

viii

rr. IT m="ClJRDTST 1 27
6. irF.m= "DI3TH IB 128
7. IrEM="cuRVAT . 128
8. ITEM-"ARC".......... .. . 129
9. ITEM="CURVEC" 129

10. ITEM="SURVEC t 1 29
11. ITEM="GETEND"'.. 130
12. ITEM=t1 GENTAB11.. 130
13. ITEM="EDGETAB 131
14. ITEM-"CURTAB1'.. 131
15. ITEM=t"SETTAB"f.. 132
16. ITEM- tt SETCOR" 132
17. ITEM="SGALE". 133
18. ITEM="TRANS". 133
19. ITEM="CONIClJR". 1314
20. ITEM-"SCURVE" 1314
?1 . ITEM="FLATSUR". 1 36
22. ITEM="GONISUR"l. 137
23. ITEM="SPLINE" 138
214. TTEM="INSEC 138
25. ITEM="EDGECUR". 138
26. ITEM-"AXIS 139
27. ITEM="BOUNCUR"O. 139
28. ITEM='1ROTATE 140
29. ITEM="STACK" 142
30. ITFM="BLEND 143
31. ITEM="TRANSUR 1414
32. !TEM="TENSIR'". 145
33. ITEM=?rPARC0R 146
314. ITEM4=rPATCHF.. 147
35. ITEM-"LINE"... 148
36. ITEM-"CURRENT 149
37. ITEM='1 SWITCH 149
38. ITEM=' tOUTPUT 149
39. ITEM="INSERT" 150
40. ITEM-"EXTRACT"... 150
41. ITEM="COMBINE 151
42. ITEM="COPY" 152
43. ITEM-"P0INTt'... 152)
44. ITEM-"CORPAR".... 153
45. ITEM="SETVAL".... 153
46. ITEM="SETNUM 153
47. ITEM="SURDIST 1514

D. ;IJBouTINES

Subroutines List. 155

1. CURDIST 157
2. RELDIST 157
3. SING,COSG,TANG,ACOSG. 159
4. AITKEN. 159
5. ARCLNGT 160
6. CURVEC. 160

ix

7. SURVEC . 162
8. GENTAB. 164~
9. SCAL. 167

10. TRANS 1671
11. CONICUR. 168
12. DET3 172
13. DET4. 172
14. FLATSUR.o...... 172
15. CONISUR 173
16. INTSEC. 178
17. ROTATE. 181
,8. STACK.............................8
19. BLEND 190
20. PATCH 191
21. EDGETAB 1

2.INTERP1,INTERP2, adiNTERP3.................197

23. LINE. 197
24. PUT 198

Core Storage. 198
File Storage 200
Print 201
Plot 201

25. GET. 202

From core. .o.........................203
From file. 203
From namelist. 205
From the current array. 20's

26. SWITCH 205
27. INSERT 206
28. EXTRACT. 207
29. SCURVE 208
30. CURTAB 209
31. FACDIST1 1e
3?. SPLINE 12
33. SPARC 13
34. TRANSUR 21~4
35. TENSR 216
36. CORPAR. 218
.37. TANPAR. 222
38. PARCOR. 224I
39. SPLNSJR 25
4J0. SURSPL 22'j
41. CURSPL....................

x

APPENDIX A

D[STRIBUTION FUNCTIONS. 227

APPENDIX B

CONIC-SECTION CURVES. 2314

1. Circle. 234
2. Ellipse. 2314
3. Circular arec.. 235
L I . Elliptical arc 236
5. Parabola 237
6. Hyperbola. 238

APPENDIX C

CONIC-SECTION SURFACES. 2140

1. Sphere 240
2. Ellipsoid. 2140
3. Spherical segment. 2141
14. Ellipsoidal segment. 2144
5. Elliptic cone.........................21414
6. Elliptic paraboloid. 2145

APPENDIX D

CUBIC SPACE CURVE 248

APPENDIX E

RADIUS OF CURVATURE 249

APPENDIX F

SURFACE(CURV7) SPLENE..................

APPENDIX G

SPLINE. 252

APPENDIX H

NEWTO~N ITERATION FOR INTERSECTION 2514

HFFERENCS 257

xi/xii (Blank)

NTrRODUCTION

The surface generation system serves as a front-end to the grid

gcneration system (Vol. III), generating surfaces(curves) to be input to

the grid system as segments of the boundary of the region within which

the grid is to be constructed. The surface system can generate certain

generic surfaces, or can receive general surfaces from the grid system

or other source as input for further processing. Curves can also be ro-

tated, stacked or blended to form surfaces. In any case, the surfaces

can bp ;caled, transformed and concatenated to form general boundary

segments. This system also can generate curvilinear grids on curved

surfaces in terms of surface parametric coordinates by interpolation on

the splined surface and can generate surface intersections.

The code perates by responding to a series of commands given

through NAMELIST input. Each read of the NAMELIST invokes a single op-

eration, e.g. the generation of a generic surface or the transformation

of a surfa'e. General boundary segments are constructed by a sequence

of these operations, culminating in storage of the surface for later

input to the grid generation system. The code can also plot the surface

at any stage of development.

Tn the following sections the use of the code is described first in

Part 1, and a general discussion of the operation of each subroutine is

given theruafter in Part II and the Appendices. This latter discussion

is not essential to the use of the code, but is provided to allow for

greater understanding and possible modification of the code.

m a a ! l I |1

NEW FEATURES

The 1988 version of the front-end boundary code for the EAGLE grid

code contains several modifications and improvements of certain features

of the original code. The major thrust of these new features is to sim-

plify the construction of complicated boundary configurations. Refer-

ence may be made to a new section entitled Easy EAGLE (Section 4 of

Volume I) in which the general use of the code is discussed. This new

section is intended to provide the user with essential information on

the most commonly used features of the code. This section should hope-

fully allow the new user to quickly get into operation.

The construction of complicated boundary surfaces has been greatly

simplified by making provision for the addressing of points by point

numbers instead of by the three Cartesian coordinates (Section I-B9).

Boundary segments and spacings can also be addressed by numbers. Spac-

ings and the number of points on segments can be defined in one place

and then used on different segments having common values. This greatly

facilitates the changing of such parameters since common values do not

have to be changed explicitly throughout the runstream. These point and

segment numbers can be carried from the front-end boundary code Into the

grid code, and this allows the number of points on the various boundary

segments to be changed in the input to the front-end code without re-

quiring changes in the input to the grid code. This feature also makes

it much easier to construct the block structure from sketches of the

configuration.

The most significant other new features of the fronL-end code are

the following:

2

1. The input has been simplified by the use of a number of addi-

tional defaults.

2. Provision has been made for creation of a file of segments for

plotting.

3. Several features regarding point distributions have been added

to make It easier to set spacings to match those on other seg-

ments.

4. Provision has been made for the generation of surface parametric

coordinates for use as input to the grid code for the generation

of a 2D grid on a curved surface.

5. Point distributions can now be placed on surfaces.

Several bugs in the original version have also been fixed, of

course. Some new sections have also been added, following the original

sc(:tions. Finally, alphabetical lists of the ITEM operations and the

subroutines have been added.

The following significant changes to specific operations should be

noted (Details are given in the sections indicated):

Section I-B2, B3

The default for TRIAD has been changed to "YES".

Section I-B5

It is also possible to place several surfaces(curves) on a file for

later plotting by using ITEM-"COMBINE" (Section I-E21).

3

Section I-B6

If a single value is given for SPACE (or its equivalenced quanti-

ties) DISTYP and its equivalenced quantities default to "TANH". If two

values are given for SPACE, DISTYP defaults to "BOTH".

The value for SPACE will be set to a value previously stored by the

operation "SETVAL" (Section I-E23) if a negative integer is given for

SPACE.

Section I-B9

Points can be addressed by numbers if the operation ITEM-"POINT"

(Section I-E25) has been used to set the Cartesian coordinates of the

point. In that case a single positive integer given for Ri or R2 will

be taken to be the point number, and the corresponding coordinates will

be retrieved from storage.

Section I-BlO

The spacing given in SPACE (or its equivalenced quantities) can be

taken from that on an end of an existing curve by giving a positive in-

teger for SPACE with RELATIV omitted.

Section I-C2, C4

A single positive integer for RI or R2 is taken as a point number,

set by a previous usage of ITEM-"POINT" (Section I-B9).

Section I-D4

The inclusion of NORCOS is no longer necessary.

........... --=. muiimmiiimi B 4

Section I-El

The spacing can be set in several ways as discussed in Section

I-B6.

Section I-C11, C13

If POINT="FIRST", the first point on the existing curve will be

taken (same effect as POINT-1), and if POINT-"LAST" the last point will

be taken.

Section I-E15

If the surface was the intersected surface of the intersection op-

eration, ITEM-"INTSEC", and no later surface has been splined, it is not

necessary to invoke ITEM-"SPLINE" for that surface.

Section I-E18

The default for REORDER is ("SWITCH", 0,0), simply interchanging

the faster and slower running directions.

Section I-E19

With curves, START is defaulted to the end of the curve, and can

thus be omitted if one curve Is to be added to the end of another.

3ection I-E21

The operation ITEM-"COMBINE" will store a table of contents of the

combined file if CONTENT-"YES". This table consists of the COREOUT nam-

ber and the surface(curve) dimensions for each segment on the file.

5

This table can be read by the grid code and used there to set up the

boundary configuration (cf. Section I-C23 of Volume III).

Section I-E23

fYPE has been changed to MATH.

The operation "SETVAL" now sets only real values.

The operation "SETNUM" sets integer values.

Section I-E25

The operation

ITEM="POINT"

sets the Cartesian coordinates, given in R(3), of a numbered point indi-

cated by the positive integer given for POINT (cf. Section I-B9).

Section I-E26

The operation

ITEM-"CORPAR"

generates the values of the surface parametric coordinates for each

point on an existing surface(curve) constructed on a curved surface.

Section I-E27

The operation

"SURDIST"

distributes points on a surface with specified spacing at each edge.

6

PART I - USER'S MANUAL

A. INTRODUCTION

The various operations for the generation of surfaces(curves), or

the manipulation thereof, are described below. Each of these L. 'rations

is invoked by a NAMELIST input statement of the form

E$INPUT ITEM = "operation", quantity-value, --- $

where the name in quotes designates the particular operation, and values

for the quantities relevant to this operation are specified following

this designation, each specification being separated from the next by a

comma. In these specifications, 'quantity' is the name of the quantity,

and 'value' is its value, e.g. RADIUS=2.3.

Arrays appear as

quantity - value, value,

and repeated values in arrays can be indicated by N*value, where N is

the number of values. No distinction is made on the left side of the

equal sign on the input statement between quantities that are scalars

or arrays unless only a value other than the first is to be given for an

array, In which case the notation is

quantity(N) - value

where N indicates the position in the array. Only those entries in an

array that are relevant to the operation invoked need be given. Thus an

array dimensioned for two values, e.g. the number of points in each di-

rection on a surface, is given only one value for a curve, i.e.

quantity - value

7

Values are given as integers or floating point numbers as appropri-

ate to the particular quantity. Floating point numbers may be In either

decimal or exponential form, e.g. 102.3 or 1.023E2. The decimal can be

omitted if the value given for a floating point quantity happens to be

an integer, i.e., 10 serves as well as 10.0. Only relevant quantities

need be included on the input statement. All quantities are defaulted

after each read, and the code checks the input for unreasonable or omit-

ted values of relevant quantities.

In all the following discussions, capital letters on the input

statement are to appear on the input exactly as given, whether on the

left of an equal sign or within quotes. (The quotes also appear.) Nu-

merical values to be given are identified by small letters. Only those

quantities relevant to the particular operation involved need be in-

cluded. The only essential space is that between INPUT and ITEM.

Spaces around the commas and equal signs may be used for clarity. The

input is terminated by the statement

E$INPUT ITEM - "END" $

In many cases a series of operations Is performed to generate a

final surface. When a succeeding operation is performed on the surface

resulting from the immediately preceding operation, it is not necessary

to store the intermediate surface since the result of each operation

remains in 'current' position to be treated by the next operation. If,

however, other operations intervene, or if a surface is to be used in

more than one later operation, then the surface must be stored for later

use.

8

OPERATIONS LIST

Operation Page

-ARC 129
A XIS. 139
BLEND. 143
BOUNCUR 139
COMBINE 151
CONICUR 1314
CONISJR 137
CORPAR. 153
COPY. 152
CURDIST 127
CURRENT. 149
CURTAB. 131
CURVAT. 128
CURVEC. 129
DISTRIB. 128
EDGECUR . 138
EDGErAB 131
EXTRACT 150
FLATSUR 136
GENTAB.-. 130
GETEND. 130
INSEC 138
INSERT. 150
,INE 148

OUT'PUJT.. 149
PARCOR 146
PATCH. 147
POINT 152
ROTATE.. 140
SCALE 133
SCURVE. 13J4
SETCOR 132
SETNUM. 153
SETTAB. 132
SETVAL. 153
SPLINE. 138
STACK. 142
SURDIST 1514
SIJRVEC. 129
swi TCH 149
TENSUR 145
TRANS 133
TRANSUR...................... 1414

9

B. COMMON FEATURES

There are several features - storage and retrieval, printing and

plotting, and the setting of point distributions - that can be done in

connection with most surface(curve) generation operations by including

certain quantities on the input statement for the operation. These com-

mon features are described below, and then are only referenced later in

regard to the particular operations in which they are involved.

1. Adjustable Dimension Parameters

There are several dimension parameters that are set by identical

PARAMETER statements in the main program and in the subroutines. These

parameters can be changed by global edits.

DIM1,DIM2 - dimensions of largest surface that can be treated. (DIMI is
dimension of largest curve)

DIMSS - maximum number of points that can be stored in core. (Core
storage is in an array dimensioned DIMSS. More than DIMSS
points can actually be stored, in which case this array is writ-
ten to file and the core space is then reused. There is no
limit to the total number of points that can be stored in this
manner since each version of the array is written to file as it
is filled. In the interest of speed, DIMSS should be made as
large as is practical to avoid excessive file I/O.) (Section
I-B2)

DCOR - maximum number of surfaces(curves) that can be stored in core.

(This should not normally have to be given any consideration.)

(Section I-B2)

DFIL - maximum number of surfaces(curves) that can be stored on file.

(This should not normally have to be given any consideration.) If
there is a system limit on file numbers, DFIL should be set to 10
less than that limit. (Section I-B2)

DIMV - maximum number of points that can be read for a surface(curve)
from the namelist. (Section I-B4)

DVAL - maximum number of values that can be stored for input as values

of quantities on later input statements. (Section I-B7)

10

NVALMX - maximum number of terms that can be involved in the calculation

of a stored value. (Section I-BT)

DPNT - maximum number of numbered points that can be used. (Section

I-B9)

2. Placing a Surface(Curve) on Core or File Storage

Surfaces(curves) can be stored in core and/or on file. This is

done by including one of the following on the input statement for the

operation which generates the surface(curve):

COREOUT - core number

or

FILEOUT - file number

These numbers are positive integers, except as noted below. Only one

surface(curve) can be stored on core with each storage number, and only

one can be stored on file with each number. The same number can, how-

ever, be used for a core number and for a file number, since core stor-

age and file storage are completely independent, neither implying the

other.

The total number of surfaces(curves) that can be stored in core is

DCOR, and the total that can be stored on file is DFIL. These limits

are set by PARAMETER statements which can be changed by global edits.

Error messages and termination result if these limits are exceeded.

There will also usually be system limits on the largest file num-

ber, and certain file numbers may be reserved for system use. The file

numbers used in the WRITE statements are actually FILEOUT+1O, so that

the oft-used system files with numbers below 10 are automatically

11

avoided. This addition of 10 to the number given by FILEOUT must be

borne in mind in job control statements that get or preserve the file,

e.g. the file created with FILEOUT-1 must be gotten or preserved by a

job control statement referring to file 11.

Both core numbers and file numbers can be reused when overwriting

is intended, and rewinding of files is automatic unless inhibited by

including

REWOUT - "NO"

Rewinding is irrelevant to core storage, of course. Although core stor-

age numbers can be reused, the storage is not released so that there is

really no incentive to do so.

Files are normally written one Cartesian coordinate to a line. The

format is set by FORM as follows:

"UNFORM" : unformatted (default)

"Ell : E20.8

"LIST" : list-directed

The grid code uses the unformatted form by default also, and this form

should be used throughout unless the file is intended for later use not

allowing the unformatted form. If TRIAD-"YES" is included on the input

statement, all three coordinates will be written on one line.

It is possible to have a label printed in association with the

storage operation by including

LABOUT -

where a string of up to eight alphanumeric characters appears Inside the

quotes. This label is not placed on the storage, however, but is simply

printed and thus cannot be used by the code to locate the element.

12

Certain operations can be done on more than one surface(curve) at

the same time. In that case, the surfaces lnvolvtud can be stored by in-

eluding one of the following:

COREOUT- , , --

or

FILEOUT- , _,-

where now the multiple entries are the core and/or file numbers, which

do not have to be given in any order. Negative entries imply all num-

bers from the preceding entry (which must be positive) to the magnitude

of the negative entry, e.g. 5,-9 refers to files 5,6,7,8, and 9. The

3ingle value, "SAME", given instead of storage numbers, implies all of

the same storage locations retrieved on a COREIN or FILEIN for the same

operation.

3. Retrieving a Surface(Curve) from Core or File Storage

This is done by including one of the following on the input state-

ment for the operation which is to use the surface(curve):

COREIN - core number

or

FILEIN - file number

where the numbers are positive integers except as indicated below.

Rewinding of files is automatic unless inhibited by including

REWIN - "NO"

Rewinding is not relevant to core storage, of course.

13

Such files could have been written by this code during the current

run, or may have been preserved from a previous run, or may be from some

other source. The surface could have been written as triads of three

Cartesian coordinates per line, in a format indicated by FORM as in

Section I-B2, or with each coordinate on a separate line if TRIAD-"NO"

is included.

When files are retrieved and placed in the same operation, a dif-

ferent form of the input file can be specified by including ITRIAD and

IFCRM, with the same usage explained for TRIAD and FORM.

The defaults are the same as for TRIAD and FORM. If ITRIAD and IFORM

are not included, the specification set by TRIAD and FORM is in effect.

A file written by the grid code (Vol. III, Section C-17) can be

read by giving the negative of the file number for FILEIN. Such a file

must contain only a two-dimensional surface(curve). If this surface is

composed of multiple blocks, and storage is called for, each block will

be stored on successive core or file numbers, starting with the one

given by COREOUT or FILEOUT, e.g. a file containing three blocks read

from the grid code will be stored here on files FILEOUT, FILEOUT+1,

FILEOUT+2, etc. Consideration must be given to this, else some files

may be overwritten inadvertently.

It is possible to have a label printed in association with the re-

trieval operation by including

LABIN

where a string of up to eight alphanumeric characters appears inside the

quotes. This label is not used by the code.

14

Certain operations can be done on more than one surface(curve) at

the same time. In that case, the surfaces involved can be retrieved

from storage by including one of the following:

COREIN- ,

or

FILEIN __, , __

where now the multiple entries are the core and/or file numbers, which

do not have to be given in any order. Negative entries imply all num-

bers from the preceding entry (which must be positive) to the magnitude

of the negative entry, e.g, 5,-9 refers to files 5,6,7,8, and 9.

4. Reading a Surface(Curve) from the Input

A surface(curve) can be read directly on the input statement for an

operation by including:

VALUES __, ,

, , $

where the values given are the three Cartesian coordinates of each suc-

cessive point on the surface. The succession is first along the curvi-

linear coordinate corresponding to the first index on the surface, and

15

then on to successive values of the other Index. The maximum number of

points that can be read on a surface is DIMV, which is set by a PARAME-

TER statement and can be changed by a global edit.

5. Printing and/or Plotting a Surface(Curve)

A surface(curve) can be printed by including

OUT = "PRINT"

on the input statement for the generating operation. Similarly, plotting

is done by including

OUT - "PLOT"

Both can be done by including

OUT - "PRINT", "PLOT"

and the order here is immaterial.

A surface that has already been generated and stored can be printed

and/or plotted In the same manner using the operation ITEM-"OUTPUT"

(Section I-E17). (For job control statements, the plot file is 8.)

There are several other plotting parameters that can be specified,

though all are defaulted and therefore may be omitted.

Symbols can be put on the grid points by including

SYMBOL - 1 or -1

The former (1) gives symbols and lines, while the latter (-1) gives sym-

bols but no lines.

The size of the plot on the screen can be set by including

SIZE - width, height

using real numbers representing inches on the screen. The default is 8"

wide and 8" high.

16

The plots for each successive operation are normally added to the

'rame of the preceding plot to form a composite plot. A new frame can

be called for by including

FRAME - "NEW"

All of the following parameters are irrelevant except in this case.

Limits on the region of space that is plotted can be set by including

RMIN = lower x, lower y, lower z

RMAX - upper x, upper y, upper z

where these limits are real numbers. The default is to plot the entire

field. The orientation of the view can be set by including

VIEW = angle about z-axis in degrees,

angle about new y-axis in degrees,
and distance from the center of the region.

The first angle ranges from -180 to 180, and the second from 0 to 180.

Y y, y

V, X

VVI

z z

All three entries are real. The distance can be omitted if only the an-

gles are to be set. The default is 900 for both angles, i.e., x to the

right and y up, and 1000 times the maximum diagonal of the field for

the distance.

17

It is also possible to place several surfaces(curves) on a file for

later plotting by using ITEM-"COMBINE" (Section I-E21). Here the form

of the data can be determined by including TRIAD and FORM (Section

I-B2), and the inclusion of HEAD-"YES" will place a counter and the two

dimensions of the surface(curve) on a single line preceding the data for

each. For example, with TRIAD="YES", FORM-"E" or "LIST", and

HEAD="YES", the file will have the form

I NI N2

x y z

x y z first surface on file

2 NI N2

x y z

x y z second surface on file

etc.

where the surface dimensions are Ni x N2.

6. Setting a Point Distribution with Specified Spacings

Most of the surface(curve) generation operations allow the specifi-

cation of point spacings at one or both ends of a grid line, or at a

specified interior point on the line. This is done by including the

18

following, or one of its equivalenced variations as noted in the indi-

vidual operations discussed below, on the input statement for the gener-

ating operation:

DISTYP = "type"

where the type is one of the following:

BOTH - for specified spacing at both ends

TANH or SINH - for specified spacing at one end

INTERIOR - for specified spacing at an interior point

(With specified spacing at one end, TANH gives the smoothest overall

distribution, while SINH gives the most uniform spacing near the end.

The former is more generally appropriate.) Specification at one end

means at the first end. No provision is made for specification at only

the second end. No generality is lost thereby because the end where the

spacing is to be specified can always be made the first end, by using

ITEM = "SWITCH" (Section I-E18).

The specification of the spacing at both ends is done by including

SPACE = first end spacing, second end spacing

while specification at one end is done by

SPACE = first end spacing

If the specification is at an interior point, the following are given:

SPACE - spacing

ARCINT - arc length location of interior point

The spacings (and the arc length) in these specifications may be rela-

tive, i.e., fractions on the range 0-1, unless

RELATIV = "NO" and TOTARC = total arc length

19

are included. There are two entries in RELATIV, corresponding to the

two in SPACE, when the spacing is specified on both ends. Similarly the

second entry corresponds to the arc length for specified interior spac-

ing.

If a single value is given for SPACE (or its equivalenced quanti-

ties) DISTYP and its equivalenced quantities default to "TANH". If two

values are gvien for SPACE, DISTYP defaults to "BOTH".

The value for SPACE will be set to a value previously stored by the

operation "SETVAL" (Section I-E23) if a negative integer is given for

SPACE. In this case the magnitude is the storage location.

If a positive integer is given for SPACE, and RELATIV is not in-

cluded, the absolute spacing will be taken from that at an end of an

existing curve (Section I-BlO). In this case, the particular end m-ist

be indicated by including END (having two entries, corresponding to

those of SPACE). The possible values for END are "FIRST" and "LAST",

indicating that the spacing is to be taken from the first or last end of

the existing curve. The default for END is "LAST", "FIRST"

corresponding to the comon case illustrated below.

20

The existing curve does not, however, have to be physically adjacent to

an end of the curve being generated, but such will often be the case.

This mode is allowed only for operations that allow absolute spacing to

be specified.

It is not necessary to use the same mode for each of the two en-

tries of SPACE.

For distributions in both directions on a surface, a terminology

analogous to that given above is employed. This is described for each

type of surface as they are discussed below. The following equivalenced

variables are used for the distribution parameters in different opera-

tions:

DISTYP SPACE ARCINT

DISTANG SPACANG ARCIANG angular distribution

DISTLON SPACLON ARCILON : longitude distribution

DISTLAT SPACLAT ARCILAT latitude distribution

DISTRAD SPACRAD ARCIRAD : radial distribution

DISTCUR SPACCUR ARCICUR : curve distribution

7. Use of Internally Calculated Values

The values to be given on input statements for certain quantities

can be calculated internally from other values and stored for later use.

Values for the following quantities (and any equivalenced quantities)

may be given in this manner:

POINTS, POINTSI, POINT, START, END

21

A negative value given for any of these quantities causes a value to be

obtained from the storage location indicated by its magnitude. The

stored value is established by a prior use of ITEM - "SETVAL" (Section

I-E23).

Internally calculated values (Section I-E23) can also be used for

SPACE. Internally calculated integer values are set by ITEM="SETNUM",

rather than "SETVAL", the latter being used for real values. A value

can be simply stored by these operations also.

8. Curves on Curved Surfaces

Certain operations can be applied on curved surfaces, as well as in

the plane.

In this case the surface must have been generated by any of the surface-

generation operations and splined by the use of the operation ITEM

"SPLINE" before the present operation is invoked. This mode is activated

by including

SURFACE - "CURVED"

on the input statement for the present operation. The operations that

can be used in this manner are the following:

LINE, SCURVE, TRANSUR, TENSUR, BLEND, PATCH

22

In this mode, values given on input for the Cartesian coordinates

of an end point are converted by the code to those of the closest point

on the surface. Similarly, slope vectors given on input are projected

onto tangents to the surface:

9. Numbered Points

Points can be addressed by numbers if the operation ITEMw"POINT"

(Section I-E25) has been used to set the Cartesian coordinates of the

point. In that case a single positive integer given for RI or R2 will

be taken to be the point number, and the corresponding coordinates will

be retrieved from storage.

10. Spacing from Existing Curve

The spacing given in SPACE (or its equivalenced quantities) can be

taken from that on an end of an existing curve by giving a positive in-

teger for SPACE with RELATIV omitted. The number given identifies a

numbered segment (a segment number is the COREOUT number given when the

curve was generated, Section I-B2) from which the spacing is taken.

Spacings specified in this manner are by nature absolute.

Ir END(i)-"FIRST" is included, the value for SPACE(i) is taken from

the first end of the existing curve, otherwise if END(i)-"LAST",

SPACE(i) is from the last end. Here i-i corresponds to the spacing at

23

the first end of the curve being constructed, and 2 to the last end. The

default for END Is "LAST","FIRST". Although the existing curves do not

have to be contiguous with the one being constructed, such is a common

case and this default then corresponds to the most likely usage:

4P

11. Scratch Files

The code uses files 7-10 as scratch files.

24

C. GENERATION OF CURVES

1. Plane Conic-Section Curves

The operation

ITEM = "CONICUR"

generates a conic-section curve in the x-y plane (i.e., z=O). The curve

may be a closed circle or ellipse, or may be an arc segment of a circle,

ellipse, parabola, or hyperbola.

The number of points on the curve is given as

POINTS = number of points

(The first and last points on closed curves, though coincident, are each

counted.) The locations of the end points of the curve are set by the

specification of two angles, with the points progressing from the first

angle to the second:

Y

ANGLE[1]
ANGLE[2] - X

These angles are measured counterclockwise from the positive x-axis, and

are given in degrees by

ANGLE = first angle, second angle

The first angle may exceed the second, in which case the point progres-

iion is clockwise, and negative angles are allowed. If ANGLE is not

included, these angles will default to 0 and 2w for the closed curves:

25

Y

and to -7/2 and /2 for the arc segments:

y

=-X

The angular distribution of the points can be set by including

DISTANG and the associated distribution parameters (Section l-B6). Oth-

erwise, the points will be placed at equal angular spacings. Spacings

given here by SPACANG, and an interior arc length given by ARCIANG, must

be fractions of the total angle swept by the curve.

The type of curve is set by

TYPE - "type of curve"

26

and the six possibilities are listed below, together with the relevant

quantities to be included in each case:

TYPE = "CIRCLE" - closed circle centered at origin:

V

Yx

RADIUS - radius

TYPE - "ELLIPSE" - closed ellipse centered at origin:

y

SEMIAX(2) f

PSMAX(l

SEMIAX - x semi-axis, y semi-axis

TYPE - "CIRARC" - arc of circle with center on x-axis:

27

Y

WIDTH ANGLE(1

LENGTH - positive x-intercept*

WIDTH -positive y-intercept*

TYPE - "ELLIARC" - arc of ellipse with one axis on x-axis
(see figure above).

LENGTH - positive x-intercept*

WIDTH = positive y-intercept*

ECCENT - eccentricity of ellipse

TYPE - "PARABOLA" - arc of parabola with axis on x-axis and vertex

on positive %-axis:

= ANGLE(2)
WIDTH

!X

LENGTH

LENGTH =Positive x-intercept*

WIDTH Positive ypintercept

*These intercepts refer to the complete curve from which the segment

defined by the two angles Is taken.

28

LENGTH - positive xintercept*

WIDTH - positive y-intercept*

TYPE = "HYPERBOL" - arc of hyperbola with axis on x-axis and vertex

on positive x-axis (see figure above).

LENGTH - positive x-intercept*

WIDTH - positive y-intercept*

SYMTOT - asymptote angle in degrees

Finally, the curve can be stored by the inclusion of COREOUT or

FILEOUT (Section I-B2), and can be printed and/or plotted by including

OUT, together with the associated output parameters (Section I-B5).

2. Cubic Space Curve Between Two Points

A cubic curve between two points, with specified slope vector at

each end, can be generated by the operation

ITEM - "SCURVE"

The number of points on the curve is given as

POINTS - number of points

The end points are given by including

RI - three Cartesian coordinates of first point

R2 = three Cartesian coordinates of last point

The unit tangents at the ends are given as

TI - three direction cosines of unit tangent at first point

T2 = three direction cosines of unit tangent at last point

29

T se SPACE (2) 2

SPACE (1)

The point progression is from Ri to R2, and the tangents must be di-

rected accordingly. The direction cosines of the unit tangents can be

given either as actual cosines, or as the angles,(in degrees) of which

the cosine is to be taken. (Values greater than one in magnitude are

taken as angles, while magnitudes of one or less are taken as cosines.)

The spacings at each end of the curve are given as

SPACE = spacing at first end, spacing at second end

The point distribution on the curve is set automatically according to

the hyperbolic tangent form, Section I-B6, so that no other distribution

parameters are involved.

A single positive integer for RI or R2 is taken as a point number,

set by a previous usage of ITEM-"POINT" (Section I-B9). It is not nec-

essary to use the same mode for both Ri and R2. The spacing can be set

in several ways as discussed in the revision of Section I-B6.

Either or both of the end points of the curve may be set by prior

usages of the operation ITEM-"GETEND" (Section I-E13), and both end

points and unit tangents thereat may be set by prior usages of the tab

operations "GENTAB" (Section I-E9) or "CURTAB" (Section I-Eli). With

such prior setting, the corresponding R1,R2,TI, or T2 is omitted from

30

the present operation. Both spacings, however, are still required. (A

cubic curve with the spacing also set from another curve or surface can

be generated by the operation ITEM = "PATCH", Section I-D3)

A cubic curve on a curved surface can be generated by this opera-

tion with

SURFACE - "CURVED"

included (Section I-B8).

Finally, the curve can be stored by the inclusion of COREOUT or

FILEOUT (Section I-B2), and can be printed and/or plotted by including

OUT, together with the associated output parameters (Section I-B5).

3. Cubic Space Curve Connecting Two Surfaces(Curves)

A cubic space curve connecting two existing surfaces(curves), with

the slope at each end of the connecting curve matching either a normal

or a tangent to the existing surfaces(curves), can be generated using

the operation

ITEM - "PATCH"

The number of points on the cubic curve is given by

POINTS - number of points

The end points, called tab points here because a slope vector (tab) is

associated with each, must have been generated by two usages of the op-

erations ITEM-"GENTAB" (Section I-E9) or "CURTAB" (Section I-Eli), or

must have been input directly using the operation ITEM-"SETTAB" (Section

I-E12). The former select a point on an existing surface or curve, re-

spectively, as the tab point, and set the lope vector there as either a

normal or a tangent to that surface(curve). The latter operation sets

31

the tab point and the slope vector directly by input. The two tab

points can be set by any combination of these three operations. The

points on the cubic curve run from the first tab point set to the other.

The spacing on each end of the cubic curve can be continuous with that

on the surface from which the tab was taken if the tabs are tangents.

SPACE (2)

For tabs that are normals,

32

"SPACE(2)

SPACE(i)

the spacing must be specified by including

SPACE = spacing at first end, spacing at second end

This spacing will be taken as relative unless

RELATIVE = "NO", "NO"

is Included. With relative spacing at either end

TOTARC - total arc length

must also be included.

Note that if only the spacing at the second end is to be specified,

the form is

SPACE(2) - spacing

and

RELATIV(2) = "NO"

while that at only the first end can be given simply as

SPACE - spacing

and

RELATIV - "NO"

The spacing can also be directly specified for tqbs that are tangents by

including SPACE, to override the continuous spacing.

33

This operation can be applied on a curved surface (Section I-B8) by

including

SURFACE - "CURVED"

Finally, the curve can be stored by the inclusion of COREOUT or FILEOUT

(Section I-B2), and can be printed and/or plotted by including OUT, to-

gether with the associated output parameters (Section I-B5).

4. Straight Line

A straight line between two points can be generated by the opera-

tion

ITEM = "LINE"

The number of points on the line is given by

POINTS - number of points

The end points are given by including

RI - three Cartesian coordinates of first point

R2 = three Cartesian coordinates of last point

Alternatively, either, or both, of these end points can have been set by

prior use of the operation ITEM-"GETEND" (Section I-E9) which selects a

point from an existing curve.

34

z

R2, second point

Ri first point

Y

x

The point progression on the line is from RI to R2.

The distribution of the points on the line can be set by including

DISTYP and the associated distribution parameters (Section I-B6). Oth-

erwise the points will be equally spaced. The spacing given here by

SPACE, and an arc length given by ARCINT, may be fractions of the total

line length, or may be actual distances (with RELATIV-"NO" included).

A single positive integer for RI or R2 is taken as a point number,

set by a previous usage of ITEM-"POINT" (Section I-B9). It is not nec-

essary to use the same mode for both RI and R2. The spacing can be set

in several ways as discussed in the revision of Section I-B6.

This operation can be applied on a curved surface (Section I-B8) by

including

SURFACE - "CURVED"

Finally, the line can be stored by the inclusion of COREOUT or FILEOUT

(Section I-B2) and can be printed and/or plotted by including OUT, to-

gether with the associated output parameters (Section I-B5).

35

5. Generation of a Curve as the Intersection of Two Surfaces

The operation

ITEM - "INTSEC"

generates a curve formed by the intersections of one family of curves on

an intersecting surface with an intersected surface. Both of these sur-

faces must have been generated prior to the invocation of the present

operation. The intersecting surface must be in current position, (Sec-

tion I-E16), and the storage location of the intersected surface is

given by COREIN or FILEIN (Section I-B3). The intersecting curves are

those in the second direction on the intersecting surface, (all of which

must intersect the intersected surface), so that the number of points on

the intersection curve will be the same as the first dimension of the

intersecting surface. Finally, the line can be stored by the inclusion

of COREOUT or FILEOUT (Section I-B2), and can be printed and/or plotted

by including OUT, together with the associated output parameters (Sec-

tion I-BS).

36

D. GENERATION OF SURFACES

1. Flat Conic-Section Surfaces

A flat surface on the x-y plane (with z-O) bounded by a conic-see-

tion curve (and straight lines closing open curves) can be generated by

the operation

ITEM - "FLATSUR"

The conic-section curve may be any of the plane conic-section curves

generated by the operation ITEM - "CONICUR" (Section I-Cl). The points

will be placed on radial and circumferential lines. The number of

points on each of the two sets of lines is given by

CURPTS - number of circumferential points

RADPTS = number of radial points

(The first and last points on closed lines, though coincident, are each

counted.)

The parameters, including ANGLE, for the conic-section curve are

the same as described for ITEM-"CONICUR". The closed curves give flat

surfaces of the form

Y

37

while the open segments are closed by straight lines from the ends of

the curves to the origin:

Y

x

On the resulting surface, the first subscript runs along the circum-

ferential curves, so that the surface dimensions are (CURPTS,RADPTS).

The points on the circumferential curves run from the first angle to the

second, as with ITEM-"CONICUR", while the points on the radial lines run

from the origin to the conic-section curve:

Y

E2 1 1,2,.. RADPTS

E1= ,2., CURPTS ---

XANGE (2) ANGLE(I)

The angular distribution of points on the circunferential lines can

be set as with ITEM-"CONICUR", using DISTANG, etc. (Section I-B6); oth-

erwise the angular distribution will be uniform. The spacings, and an

interior arc length, here are relative to the total angle. The radial

38

point distribution can be set by including DISTRAD, etc. (Section 1-86);

otherwise, the radial points will be equally spaced. The spacings, and

an interior arc length, for the radial distribution are f,'actions of the

local radial distance to the curve.

Finally, the surface can be stored by the inclusion of COREOUT or

FILEOUT (Section I-B2), and can be printed and/or plotted by including

OUT, together with the associated output parameters (Section I-B5).

2. Conic-Section Surfaces

The operation

ITEM - "CONISUR"

generates a conic-section surface, which may be a closed sphere or el-

lipsoid, or may be a segment of a sphere, ellipsoid, elliptical cone, or

elliptical paraboloid. The points will be placed on the surface along

the lines swept out by the two polar coordinate angles (latitude and

longitude lines for the sphere, and analogous lines in the other cases.)

The number of points on each of the two sets of lines is given by

LONPTS - number of longitude points

LATPTS = number of latitude points

(The first and last points on closed lines, though coincident, are each

counted.)

The locations of the end points of the two sets of lines are deter-

mined by the specification of two angles in each case, with the points

progressing from the first angle to the second:

39

first latitude

second latitude

second longitude/ -. ,

first longitude- . -.

The latitude angle is measured from the positive z-axis, and ranges from

0 to n in magnitude. The longitude angle is measured from the positive

x-axis toward the positive y-axis, and ranges from 0 to 21 in magnitude.

The angles are given in degrees by

LON - first longitude angle, second longitude angle

LAT - first latitude angle, second latitude angle

The first angle of either pair may exceed the second, the progression of

points being from the first angle to the second in any case, and nega-

tive longitudes are allowed.

If LON is not included, then the longitude limits will default to 0

and 2n, and if LAT is omitted the latitude limits will default to 0 to

for the closed surfaces and to 0 to w/2 for the open segments:

40

x x 1 l s o n

first point last point first point last point

first point second point z

last point

first point

YA" closed surfaces y open segments

The first subscript on the surface runs along the lines of constant

latitude, so that the surface dimensions are (LONPTS,LATPTS):

x

-z

Y' • •• LONPTS
LATPTS

The angular distributions of the points on each set of lines can be

set (Section I-B6) by including DISTLON, etc., for longitude, and

DISTLAT, etc., for latitude. Otherwise, the points will be placed at

• maa I l mm i llIli illi II I 41

equal angular increments. Spacings and interior arc lengths given here

must be fractions of the total angle swept by the points on the corre-

sponding set of lines.

The type of surface is set by

TYPE = "type of surface"

and the six possibilities are listed below, together with the relevant

parameters to be included in each case:

TYPE "SPHERE" - closed sphere centered at origin:

x

z
R AD IUS

y

RADIUS - radius

TYPE - "ELIPSOID" - closed ellipsoid centered at origin:

X

SEMIAX(1)

SEMIAX(2) z

SEMIAX - x semi-axis, y semi-axis, z semi-axis

42

TYPE - "SPHSEG" - segment of sphere with center on z-axis:

X

WIDTH(J

WIDTH(2)I
-

latitude

yf longitude

LENGTH - positive Z-intercept*

LENGTH = positive z-intercept*

WIDTH = positive x-intercept, positive y-intercept

TYPE = "ELLISEG" - segment of ellipse with one axis on z-axis (see

figure above).

LENGTH = positive z-intercept*

WIDTH = positive x-intercept*, positve y-intercept*

ECCENT - eccentricity of ellipsoid

TYPE = "ELLICONE" - segment of elliptical cone with axis on
z-axis and vertex on positive z-axis:

The intercepts are those of the complete surface from which the segment

is taken.

43

x

WIDTH(1)

WIDTH (2) -
latitude J - - -

y! longitude LENGTH

LENGTH - positive z-intercept*

WIDTH = positve x-intercept*, positve y-intercept*

TYPE - "ELLIPAR" - segment of elliptic paraboloid with axis on

z-axis and vertex on positve z-axis:

X

WIDTH(1)

WIDTH(2) -z

latitude

y! l....iue LENGTH

LENGTH - positive z-intercept*

WIDTH = positve x-intercept*, positve y-intercept*

Finally, the surface can be stored by the inclusion of COREOUT or

FILEOUT (Section I-B2), and can be printed and/or plotted by including

OUT, together with the associated output parameters (Section I-B5).

44

3. Cubic Patch Surface

A surface composed of cubic space curves connecting corresponding

points on two end curves, with slope vectors specified on the end

curves, can be generated with the operation

ITEM = "PATCH"

The number of points on the cubic curves, and that on the end curves, is

given by

POINTS = number of points on cubic curves

The end curves, called tab curves here because a slope vector (tab) is

associated with each point thereon, must have been generated by two us-

ages of the operations ITEM-"GENTAB" (Section I-E9), "EDGETAB" (Section

I-EIO), "CURTAB" (Section I-Eli), or "SETTAB" (Section I-E12). These

operations select a portion of a grid line on an existing surface as the

tab curve, and set the slope vectors thereon as either a normal or one

of the tangents to that surface. The operation ITEM="PATCH" thus can

serve to generate a surface connecting two existing surfaces. The cubic

surface generated can, of course, be treated as a separate surface also,

with the two existing surfaces having served only as sources from which

to extract the tab curves. On the cubic surface, the first subscript is

along the tab curves, with the second along the cubic connecting curves,

so that the dimensions of the surface are (TABPTS,POINTS), where

TABPTS, the number of points on the tab curves, is obtained from the

tab curves. The points on the connecting curves run from the first tab

curve designated to the other:

45

& 1,2..., I 1,2,...,TABPTS

tab cuve 2

~tab curve 1

The spacing on each end of the cubic curve can be continuous with that

on the surface from which the tab curves were obtained if the tabs are

tangents.

SPACE(2)

For tabs that are normals,

SP IACE(2)

SPACE(J

46

the spacing must be specified by including

SPACE = spacing at first end, spacing at second end

This spacing will be taken as relative unless

RELATIVE - "NO", "NO"

is included. With relative spacing at either end

TOTARC - total arc length

must also be included.

Note that if only the spacing at the second end is to be specified,

the form is

SPACE(2) - spacing

and

RELATIV(2) - "NO"

while that at only the first end can be given simply as

SPACE - spacing

and

RELATIV - "NO"

The spacing can also be directly specified for tabs that are tangents by

including SPACE, to override the continuous spacing.

This operation can be applied on a curved surface (Section I-B8) by

including

SURFACE - "CURVED"

Finally, the surface can be stored by the inclusion of COREOUT or

FILEOUT (Section I-B2), and can be printed and/or plotted by including

OUT, together with the associated output parameters (Section I-B5).

47

4. Generation of a Surface by Rotation of a Curve

The operation

ITEM = "ROTATE"

generates a surface by rotating a space scurve about an axis:

---rotation axis

The surface is formed by a set of curves, each of which results from

rotation of a given curve to successive angular positions. The given

curve that is rotated may be different for each rotation angle and is

determined by interpolation between two existing curves before rotation.

These two existing curves must have been generated in the same axes sys-

tem, with the same number of points, and are designated by one or two

usages of the operation ITEM-"BOUNCUR" (Section I-E5) before the pres-

ent operation is invoked. The curves that are rotated to the first and

last angular positions, respectively. coincide with the first and second

designated curves. Note that the interpolation is done before the rota-

tion.

48

X designated curves

-. interpolated curves

designated curves

rotated curve

s-IS Z

These two designated curves must both have this number of points. If

only one use of "BOUNCURI is made, the same curve will be rotated to

each angular position.

The number of rotation angle positions is given by

ANGPTS - number of rotation angles

On the surface, the first subscript runs along the rotated curves, and

the second runs in the rotation direction. The dimensions of the sur-

face are thus (CURPTS,ANGPTS), where CURPTS is the number of' points on

the rotated curves.

1 1,2,...,CURPTS

&2 11,2 ANGPTS

49

AXIS
ANGLE(1) #2" AI

The rotation axis is set by

AXCOS - three direction cosines of axis

and passes through the origin of the axes system in which the two desig-

nated curves are defined. The entries given may be actual cosines or

may be the corresponding angles (in degrees). The direction cosines are

relative to the axes system in which the two designated curves are de-

fined. The rotation angle is positive clockwise looking down the axis:

z

/Y

X/

\ 5

50

The axis is defaulted to the z axis. The limits of the rotation are set

by

ANGLE = Initial rotation angle in degrees, final angle

If only one angle is given, the rotation will be a full 3600 starting

from that angle. (The first and last angles in this case are still

counted separately even though they are coincident.) Either limit may

be the larger, the rotation being from the first angle to the second in

any case, and negative angles are allowed.

The distribution of the rotation angles can be set by including

DISTANG, etc. (Section I-B6). Otherwise, the angles will be equally

spaced. Spacings and arc length are given here as fractions of the dif-

ference between the rotation angle limits.

A distribution can also be set for the interpolation between the

two designated curves by including DISTCUR, etc. If no distribution is

set, the interpolation is linear by the number of the rotation position.

Spacings and arc lengths here are fractions of the total number of rota-

tion positions. Another type of distribution for the interpolation can

also be used as follows: If DISTCUR-"CURVE", the fractions for the in-

terpolation will be taken from a distribution function to be supplied.

This function is of the form y(x), where the abscissa is the angle and

the ordinate is a characteristic length scale. (Both of these will be

properly normalized by the code and thus do not have to conform to spe-

cific raiige- a: input.) This distribution function can be generated

by any of the curve generation operations, or read in, but it must

be defined in the x-y plane and must be single-valued in x. It does not

51

have to be monotonic. This distribution function could, for example, be

a radius that is a function of the rotation angle. The number of points

for this distribution function is given as

POINTSI - number of points

and its location must be given by COREIN or FILEIN (Section I-B3).

Finally, the surface can be stored by the inclusion of COREOUT or

FILEOUT (Section I-B2), and can be printed and/or plotted by including

OUT, together with the associated output parameters (Section I-B5).

5. Generation of a Surface by Stacking Curve

The operation

ITEM - "STACK"

generates a surface by stacking space curves at successive positions

along an (possibly curved) axis:

SI

At each point on the axis curve, the curve that is placed there may be

different for each position, and is determined by interpolation between

two existing curves before being placed. These two existing curves must

52

have been generated in the same axes system, with the same number of

points, and are designated by one or two usages of the operation

ITEM="BOUNCUR" (Section I-E5) before the present operation is invoked.

If only one use of "BOUNCUR" is made, the same curve will be placed at

each point on the axis. The axis curve must also be set prior to the

present operation by use of ITEM-"AXIS" (Section I-E6). The curves that

are placed at the first and last positions, respectively, on the axis

coincide with the first and second designated curve. Note that the in-

terpolation is done before the placement. On the surface, the first

subscript runs along the stacked curves, and the second runs down the

axis. The dimensions of the surface are thus (CURPTS,AXPTS):

_ & -I 1,2,•.o,

AXPTS

1,,. CURPTS

The direction of the axis of the stack in the axes system in which

the existing curves are defined is set by

AXCOS - three direction cosines of axis

The direction of the principal normal to the axis in this axes system is

defined by

NORCOS - three direction cosines of normal

53

(For each of these, the entries given may be actual cosines or may be

the angles in degrees.) The axes system containing the curve is placed

with its origin at each successive axial position, and with the speci-

fied axis direction and normal coincident with the local tangent and

principal normal to the axis curve:

X

x

AXCOS

Y" Inormal z AI

NORCOS

Y

The axis and normal are defaulted to the z and x axes respectively.

The distribution can be set by the interpolation between the two

existing curves for the curve to be placed by including DISTCUR, etc,

(Section I-B6). If no distribution is set, the interpolation is linear

by point number on the axis. Spacings and arc length here are fractions

of the total number of points on the axis. Two other types of distri-

bution for the interpolation can also be used. If DISTCUR ."CURVE", the

fractions for the interpolation will be taken from a distribution func-

tion to be supplied. This function is of the form y(x), where the ab-

scissa is the angle and the ordinate is a characteristic length scale.

(Both of these will be properly normalized by the code and thus do not

54

have to conform to specific ranges as input.) This distribution

function can be generated by any of the curve generation operations

or read in, but it must be defined in the x-y plane and must be single-

valued in x. It does not have to be monotonic. This distribution func-

tion could, for example, be a radius that is a function of the rotation

angle. The number of points on this distribution curve is given as

POINTSI = number of points

and it3 location must be given by COREIN or FILEIN (Section I-B3). If

DISrCUR="ARC" the interpolation will be linear with arc length on the

axis.

Finally, the surface can be stored by the inclusion of COREOUT or

FILEOUT (Section I-B2), and can be printed and/or plotted by including

OUT, together with the associated output parameters (Section I-B5).

6. Generation of a Surface by Blending Curves

The operation

ITEM - "BLEND"

generates a surface by interpolation between two designated existing

space curves:

x

designated curvesginterpolated

curves

-- 1,2,...,

CURPTS

designated curves 2 1,2,..., CURVES

Y
z

55

These two existing curves must have been generated in the same axes sys-

tem and must have the same number of points. These two curves are des-

ignated by one or two usages of the operation ITEM-"BOUNCUR" (Section

I-E5) before the present operation is invoked. The number of curves to

be interpolated (including the two end curves) is given by

CURVES = number of interpolated curves

On the surface, the first subscript runs along the interpolated curves,

and the second runs from the first interpolated curve to the last. The

dimensions of the surface are thus (CURPTS,CURVES):

56

/ CURVES

CURPTS

The distribution can be set for the interpolation by including

DISTCUR, etc., (Section I-B6). If no distribution is set, the interpola-

tion is linear by curve number. Spacings and arc length here are frac-

tions of the total number of curves. Another type of distribution for

the interpolation can also be used as follows: If DISTUR-"?CURVE", the

fractions for the interpolation will be taken from a distribution func-

tion to be supplied. This function is of the form y(x), where the ab-

scissa is the angle and the ordinate Is a characteristic length scale.

(Both of these will be properly normalized by the code and thus do not

have to conform to specific ranges as input.) This distribution finc-

tion can be generated by any of the curve generation operations

o- read in, but it must he defined in the x-y plane and must be single-

valued in x. It does not have to be monotonic. This distribution func-

tion could, for example, be a radius that is a function of the rotation

angle. The number of points on this distribution curve is given as

POINTSI - number of points

57

and its location must be given by COREIN or FILEIN (Section I-B3).

This operation can be applied on a curved surface (Section
I-B8) by

including

SURFACE - "CURVED"

Finally, the surface can be stored by the inclusion of COREOUT or

FILEOUT (Section I-B2), and can be printed and/or plotted by including

OUT, together with the associated parameters (Section I-B5).

7. Generation of a Surface by Transfinite Interpolation

The operation

ITEM = "TRANSUR"

generates a surface by transfinite interpolation from four designated

existing space curves:

de5igated
curve

C1411at curve

6) %''design
h a t e d c14e

These four edge curves must have been generated in the same axis system;

opposite pairs must have the same number of points; and the ends must

meet. These four curves are designated by four usages of the operation

ITEM="EDGECUR" (Section I-E7) before the present operation is invoked.

This operation can be applied on a curved surface (Section I-B8) by

including

58

SURFACE - "CURVED"

Finally, the surface can be stored by the inclusion of COREOUT or

FILEOUT (Section I-B2), and can be printed and/or plotted by including

OUT, together with the associated parameters (Section I-B5).

8. Generation of a Tensor-Product Surface (Coon's Patch)

The operation

ITEM = "TENSUR"

generates a surface by bi-cubic interpolation from four corners with

specified slope vectors:

These four corners are set by four usages of the operation ITEM-"SETCOR"

(Section I-E8) before the present operation is invoked.

This operation can be applied on a curved surface (Section I-B8) by

including

SURFACE - "CURVED"

Finally, the surface can be stored by the inclusion or COREOUT or

FILEOUT (Section I-B2), and can be printed and/or plotted by including

OUT, together with the associated parameters (Section I-B5).

59

9. Generation of a Surface from a Surface-Parametric
Coordinate Lattice

The operation

ITEM = "PARCOR"

generates a surface from an existing surface-parametric coordinate lat-

tice placed on an existing surface. The lattice can have been generated

by any of the 2D plane operations before the present operation is in-

voked. In the generation of the lattice the Cartesian coordinates used

in the 2D plane operation are interpreted as the surface parametric co-

ordinates. The SPLINE operation splines the existing surface in terms

of the curvilinear coordinates, I and &2, that assume the integer val-

ues from 1 to the number of points in each direction at the points set

on the surface. These curvilinear coordinates are the surface para-

metric coordinates, so that the range of values on the lattice must be

within the range of these coordinates. For example, let the existing

surface have N1xN2 points:

N1 , N2

1,1

Then the lattice must be generated with "Cartesian" coordinates x-&1 and

Yv 2 within the ranges 1-Ni and I-N2 by any of the 2D plane operations:

60

| i '

N1 1N2

1,5

The surface on which the parametric coordinates are defined must also

have been generated by any of the surface generation operations and

splined by operation ITEM-"SPLINE" before the present operation is in-

voked. Finally, the surface can be stored by the inclusion of COREOUT or

FILEOUT (Section I-B2), and can be printed and/or plotted by including

OUT, together with the associated parameters (Section I-B5).

61

E. AUXILLIARY OPERATIONS

I. Distributing Points on a Curve with Specified Spacing

Distribution of points on an existing curve with the relative or

actual arc-length spacing specified at one or both ends, or at a speci-

fied point between the ends, is done by the operation

ITEM = "CURDIST".

The number of points to be placed on the curve is set by

POINTS - number

and the distribution is set by DISTYP and the associated distribution

parameters (Section I-B6). The spacings given will be taken as actual

arc lengths if

RELATIV = "NO"

is included. There are two entries in RELATIV, corresponding to the two

in SPACE, when the spacing is specified on both ends. Similarly the

second entry corresponds to the arc length for specified interior spac-

ing. It is not necessary to include the total arc length with relative

spacings here since it is known from the input curve. The spacing can

be set in several ways as discussed in Section I-B6.

The points are distributed on a chord-length spline curve through

the input point distribution. The default is a quadratic spline, i.e.,

with extrapolated curvature at the ends, but a natural spline (zero cur-

vature ends) can be selected by including TYPE-"NATURAL".

The urve on which the points are to be placed must have been gen-

erated prior to this operation. If this curve was generated by the pre-

ceding operation, it will automatically be available here. Otherwise,

its storage location must be given by Including COREIN or FILEIN (See-

62

tLion I-B3). Finally, if the point distribution is to be stored, the

storage location must be given (Section I-B2), and printing and/or plot-

ting can be called for (Section I-B5).

2. Distributing Points on a Curve According to Curvature

Distribution of points on an existing curve so that points are more

closely spaced in regions of large curvature is done by the operation

ITEM - "CURVAT"

The number of points to be placed on the curve is set by

POINTS - number

The curve on which the points are to be placed must have been generated

prior to this operation. If this curve was generated by the preceding

operation, it will automatically be available here. Otherwise, its

storage location must be given by including COREIN or FILEIN (Section

1-B3). Finally, if the point distribution is to be stored, the storage

location must be given (Section I-B2), and printing and/or plotting can

be called for (Section I-B5).

3. Scaling a Surface(Curve)

A surface(curve) can be scaled by the operation

ITEM - "SCALE"

which multiplies the three Cartesian coordinates of each point by scale

factors, there being a separate factor for each of the Cartesian direc-

tions. If the surface was not generated or treated by the preceding

operation, its storage location must be given by including COREIN or

63

FILEIN (Section I-B3). This operation allows multiple surfaces to be

subjected to simultaneous scaling by giving multiple entries for COREIN

and/or FILEIN.

The three scale factors are given by

SCALE = x-factor, y-factor, z-factor

Negative values are permitted, causing mirror-image reversals. (Note

that all three factors must be negative to preserve a right-handed sys-

tem.) The scale factors can be given as quotients by including

SDENOM = x-denominator, y-denominator, z-denominator

SNUMER = x-numerator, y-numerator, z-numerator

instead of SCALE. Some factors can be input in one form and others in

the other form. For example,

SCALE(1) = , SCALE(3) = , SDENOM(2) = , SNUMER(2)

The scaled surface can be stored by including COREOUT or FILEOUT

(Section I-B2), again perhaps with multiple entries, and can be printed

and/or plotted by including OUT and the associated output parameters

(Sectioi I-B5).

4. Transforming a Surface(Curve)

A surface(curve) can be translated, rotated, and/or scaled by the

operation

ITEM = "TRANS"

If the surface was not generated or treated by the preceding command,

its storage location must be given by COREIN or FILEIN (Section I-B3).

This operation allows multiple surfaces to be subjected to the same

transformation by giving multiple entries for COREIN and/or FILEIN.

64

Translation is done by the three components of the translation vec-

tor given in

ORIGIN x-component, y-component, z-component

Rotation is done by giving either the 3X3 matrix (input by col-umns) of

direction cosines as

COSINES

ki-iI, k14' i-k'

where ('',')is the axes system in which the curve is given.

z

65

Either actual cosines or the angles (in degrees) can be given. Alterna-

tively, the rotation can be specified by giving the three Euler angles

(in degrees) as

EULER = first rotation, second rotation, third rotation

z z

y V V,

x
x *line of nodes

Scaling is done by including SCALE, as described separately for

ITEM="SCALE" (Section I-E3).

It is also possible to include an ad hoc coordinate change that has

been inserted in the code by the user at the place marked

!!! AD HOC COORDINATE CHANGE !!!

in the main program. The ad hoc change is then activated by including

CHANGE - "YES"

In the transformation, the scaling is done first, followed by rota-

tion, then translation, and finally the ad hoc change. The transformed

surface can be stored by including COREOUT or FILEOUT (Section I-B2),

again perhaps with multiple entries, and can be printed and/or plotted

by including OUT and the associated output parameters (Section I-B5).

66

5. Designating a Curve to be Rotated, Stacked, or Blended

The generation of a surface by rotation, stacking, or blending of

space curves by the operations ITEM-"ROTATE" (Section I-D4), "STACK"

(Section I-D5), or "BLEND" (Section I-D6) uses a curve that is interpo-

lated between two existing curves which must be designated prior to the

surface generation operation. Two existing curves are designated for

this purpose by two usages of the operation

ITEM - "BOUNCUR"

The storage location of the existing curve must be given by COREIN or

FILEIN (Section I-B3) unless it was generated by the operation immedi-

ately preceding the "BOUNCUR" operation.

In general, this operation will be used twice before the surface

generation operation is used. The existing curve designated by the first

use becomes the first of the two curves used in the surface generation,

etc. If only one "BOUNCUR" operation is used, the single curve so des-

ignated is used for both curves, in the surface generation operation

i.e., the interpolation is irrelevant, and thus it is that curve that

is used to form the surface.

6. Designating a Curve as the Axis Curve of a Stack

The generation of a surface by stacking space curves along an axis by

the operation ITEM="STACK" (Section I-D5) uses an existing curve as the

axis. This curve must be so designated by the operation

TTEM - "AXIS"

67

before the stacking operation is done. The storage location of the ex-

isting curve must be given by COREIN or FILEIN (Section I-B3) unless it

was generated by the operation immediately preceding the "AXIS" opera-

tion.

If the axis is a straight line, a principal normal must be defined

by including

ORIGIN = three Cartesian coordinates of a point off the line

xi

"-Z

YZ

The distance of this point from the line is irrelevant.

7. Designating a Curve as an Edge Curve for a Transfinite
Interpolation Surface

The generation of a surface by transfinite interpolation (Section

I-U7) requires four existing curves to be designated to form the four

edges of the surface. These four existing curves are designated for this

pu'pose by four usages of the operation

ITEM = "EDGECUR"

The particular edge that the curve is to form is indicated by

EDGE - "edge"

where the value In quotes Is "LOWER1", "UPPERI", "LOWER2", or "UPPER2"

as follows:

68

UPPER2

~~LOWER2

The storage location of the existing curve must be given by COREIN or

FILEIN (Section I-B3) unless it was generated by the operation immedi-

ately preceding the "EDGECUR" operation.

8. Setting a Corner for a Tensor-Product Surface

The generation of a surface by bi-cubic interpolation from four

corners (Section I-D8) requires the setting of the four corner points

and the slope vectors at these points. These four corners are set for

this purpose by four usages of the operation

ITEM - "SETCOR"

The corner is indicated by

POINT - two indices of corner

The point is set by

R - three Cartesian coordinates of point

and the slope vectors in the two directions on the surface are given as

Ti - three direction cosines of vector in first direction

T2 - three direction cosines of vector in second direction

The spacing in the two directions are given as

SPACE - spacing in first direction, spacing in second

69

9. Construction of a General Tab Curve

The operation

ITEM - "GENTAB"

selects a portion of a grid line on an existing surface as a tab curve,

and sets a slope vector at each point thereon to either a normal or tan-

gent to the surface, for use by the operation ITEM="PATCH" as an end

curve of a cubic surface connecting this and another existing surface

(Section I-D3). If this surface was generated by the preceding opera-

tion, it will automatically be available here. Otherwise, its storage

location must be included as COREIN or FILEIN (Section I-B3). The por-

tion of the zrid line to be selected is identified by the indices of its

end points, given by

START = two indices of first point

END = two indices of last point

tEND

START

One entry of START must, of course, equal the corresponding entry of

END.

70

The type of slope vector intended is given by one of the following:

TABTYP - "TANPOS" - positive tangent to crossing lines

TABTYP = "TANNEG" - negative tangent

TABTYP ="NORPOS" - positive normal unit to surface

71

TABTYP "NORNEG" - negative unit normal

Slope vectors based on normals are unit vectors, while those based on

tangents reflect the spacing on the surface from which the vector was

taken.

10. Construction of an Edge Tab Curve

The operation

ITEM = "EDGETAB"

selects an entire edge of an existing surface as a tab curve, and sets a

slope vector at each point thereon to either a normal or tangent to the

surface, for use by the operation ITEM-"PATCH" as an end curve of a cu-

bic surface connecting this and another existing surface (Seption I-D3).

If this surface was generated by the preceding operation, it will auto-

matically be available here. Otherwise, its storage location must be

included as COREIN or FILEIN (Section I-B3). The edge to be seleeted is

Identified hy

EDGE - "edge"

where one of the following appears In the quotes:

72

- UPPER2

e2- UPPER1

LOWER1

LOWER2

The type of slope vector intended is given as one of the following:

TABTYP = "TANGEN" - outward tangent to surface

TABTYP = "NORPOS" - positive unit normal to surface

73

TABTYP - "NORNEG" - negative unit normal to surface

Slope vectors based on normals are unit vectors, while those based on

tangents reflect the spacing on the surface from which the vector was

taken.

11. Construction of a Tab Point

The operation

ITEM - "CURTAB"

selects a point on an existing curve as a tab point, and sets a slope

vector there to either a principal, normal, a bi-normal, or a tangent

to the curve, for use by the operation ITEM-"PATCH" as an end point of a

cubic curve connecting a pair of points on the existing curve (Section

I-C3). If this curve was generated by the preceding operation, it will

automatically be available here. Otherwise, its storage location must

be included as COREIN or FILEIN (Section I-B3). The point to be se-

lected is identified by

POINT - point number

74

If POINT-"FIRST", the first point on the existing curve will be

taken (same effect as POINT-1), and If POINT-"LAST" the last point will

be taken. This eliminates the necessity of ascertaining how many points

are on the existing curve in the latter case.

The type of slope vector intended is given by one of the following:

TABTYP -"TANPOS" - positive tangent

TABTYP = "TANNEG" - negative tangent

TABTYP - "NORPOS" - positive unit principal normal

75

TABTYP - "NORNEG' - negative unit principal normal

TABTYP "BINPOS" - positive unit bi-norma].

normal

tangent

TABTYP ="BINNEG" - negative unit bi-normal

12. Direct Setting of a Tab Point

The operation

ITEM - "SETTAB"

76

directly sets a point and a slope vector for use by the operation

[TEM-"PATCH" as an end point of a cubic curve (Section I-C3). The point.

and slope vector are set, respectively, by

RI three Cartesian coordinates of point

Ti - three direction cosines of slope vector

The slope vector set in this manner is a unit vector. The spacing on

this slope vector will be set in operation "PATCH".

13. Designation of an End Point

The operation

ITEM - "GETEND"

selects a point on an existing surface for use as an end point of a

curve to be generated operation ITEM-"SCURVE" (Section I-C2), or a line

by the operation ITEM-"LINE" (Section I-C4). The storage location of

the existing surface must be given by COREIN or FILEIN (Section I-B3)

unless it was generated by the operation immediately preceding the "GET-

END" operation. The point to be selected is identified by

POINT - point number

If POINT-"FIRST", the first point on the existing curve will be

taken (same effect as POINT-1), and if POINT-"LAST" the last point will

be taken. This eliminates the necessity of ascertaining how many points

are on the existing curve in the latter case.

Whether the selected point is to be the first or second end point

of the curve to be generated later is specified by

END - "FIRST" or "SECOND"

77

14. Designation of an End Point and Slope Vector

The operations ITEM - "GENTAB" (Section I-E9) and "CURTAB" (Section

I-Eli) serve also to select a point and an attendant unit normal or unit

tangent on an existing surface or curve, respectively, for use as an end

point and slope vector of a curve to be generated by the operation

ITEM-"SCURVE" (Section I-C2), or as a corner to be set by operation

ITEM-"SETCOR" for a tensor product surface (Section I-E8). This mode

for these two operations is set by including

END - "end"

where the accepted values are "FIRST" and "SECOND", indicating the end

of the curve for which the point is intended. The location of the point

on the existing surface(curve) is given with "GENTAB" by

POINT = two indices of point

The second index is omitted with "CURTAB".

15. Splining a Surface(Curve)

The operation

ITEM = "SPLINE"

constructs a bi-cubic surface spline for an existing surface. If the

surface(curve) was not generated by the preceding operation, its storage

location must be given by including COREIN or FILEIN (Section I-B3).

Only one surface(curve) can be splined at a time.

If the surface was the intersected surface of the intersection op-

eration, ITEM="INTSEC", and no later surface has been splined, it is not

necessary to invoke ITEM-"SPLINE" for that surface.

78

16. Placing a Surface(Curve) in Current Position

A surface(curve) that has just been generated or treated by an op-

eration is in "current position" and can be treated by the next opera-

tion without being stored and retrieved. The operation

ITEM - "CURRENT"

retrieves a surface(curve) from storage and places it in current posi-

tion. The storage location is given by COREIN or FILEIN (Section I-B3).

17. Storing a Surface(Curve)

Storing a surface(curve) in core or on file may be done in all op-

erations where such is logical by including COREOUT or FILEOUT (Section

I-B2). A surface(curve) can also be stored explicitly at any time by

the operation

ITEM - "OUTPUT"

with COREOUT or FILEOUT included.

18. Reversing Point Progression and/or Surface Dimensions

The operation

ITEM - "SWITCH"

performs any, or all, of the following actions as specified by the en-

tries given for REORDER:

79

"REVERSE"- reverses the point progression on a curve, or on all the

grid lines in the first coordinate direction on a surface:

"REVERSE2" - reverses the point progression on all of the grid lines in

the second coordinate direction on a surface:

80

80

"SWITCH" - switches the dimensions of a surface, i.e., the second coor-

dinate direction becomes the first, etc.:

4&

Any one, two, or all three, of these operations (in any order) can be

given as the entries for REORDER. In any case the reversals are done

before the switching.

The default for REORDER is ("SWITCH", 0,0), simply interchanging

the faster and slower running directions. (The "first" coordinate di-

rection is the faster running direction.)

If the surface was not generated or treated by the previous opera-

tion, Its storage location must be given by including COREIN or FILEIN

(Section I-B3). The processed surface can be stored by including CORE-

OUT or FILEOUT (Section I-B2), and can be printed and/or plotted by in-

cluding OUT and the associated output parameters (Section I-B5).

19. Concatenation of Surfaces(Curves)

Surfaces(curves) can be attached to other surfaces(curves) by the

operation

ITEM - "INSERT"

81

Here a surface(curve), with its storage location given by COREIN or

FILEIN (Section I-B3), is attached to the surface(curve) that is in cur-

rent position. The first corner of the former surface is placed at the

point on the latter given by

START = first coordinate, second coordinate

(with the second entry omitted for curves). Note that the attachment is

made without regard to overwriting or the leaving of gaps.

With curves, START is defaulted to the end of the curve, and can

thus be omitted if one curve is to be added to the end of another.

The composite surface(curve) can be stored by including COREOUT or

FILEOUT (Section I-B2), and can be printed and/or plotted by including

OUT and the associated output parameters (Section I-B5).

20. Duplication of a Surface(Curve) Segment

A segment of an existing surface(curve) can be duplicated to stand

alone as a new surface(curve) by the operation

ITEM - "EXTRACT"

82

The storage location of the existing surface is given by COREIN or

FILEIN (Section I-B3). The dimensions of the segment are given by

POINTS = number of points in first direction, number in second

(with the second entry omitted for curves) and the location of the first

corner of the segment on the larger surface is given by

START - first coordinate, second

(again with the second entry omitted for curves).

The segment can be stored by including COREOUT or FILEOUT (Section

I-B2), and can be printed by Including OUT and the associated output

parameters (Section I-B5).

21. Combining Cores and/or Files onto One Core or File

The operation

ITEM - "COMBINE"

83

combines several cores and files onto a single core or file. The cores

and files to be combined are given by one of the following:

COREIN = first core, second core,---, last core

or

FILEIN = first file, second file,---, last file

A negative entry here implies all cores or files in consequetive order

from the preceding entry (which must be positive) to the magnitude of

the negative entry, i.e., 3, -6 implies 3, 4, 5, 6. The combined cores

and files are stored on the single core or file designated by

COREOUT = combined core

or

FILEOUT = combined file

This combination operation writes the data from the cores and files

to be combined point-by-point onto the single output core or file, with

no separation between the data from the separate sources. This feature

is intended primarily as a convenience in transfering boundary data to

the grid code. The combination operation is thus normally used at the

end of all th operations used to construct the boundaries, so that only

one file need be retained to be read by the grid code. The various sur-

faces(curves) on this file must, of course, be read by the grid code in

the sequence in which they were written on the file, without rewinds.

The operation ITEM-"COMBTNE" will store a tabla of contents of the

combined file if CONTENT="YES". This table consists of the COREOUT num-

ber and the surface(CURVE) dimensions for each segment on the file.

This table can be read by the grid code and used there to set up the

boundary configuration (cf. Section I-C23 of Volume III).

84

Alternatively, if HEAD-"YES" is included, the dimensions of each

segment, preceded by the counter, will be placed on a single line before

each segment on the file (Section I-B5). This is useful for the con-

struction of a file of segments for plotting.

22. Copying Cores or Files

The operation

ITEM = "COPY"

copies one or more cores or files onto other cores or files. Cores can

be copied to files, or vice versa. The cores or files to be copied are

given by one of the following:

COREIN - first core, second crre,---, last core

or

FILEIN - first file, second file,---, last file

A negative entry here implies all cores or files in consequetive order

from the preceding entry (which must be positive) to the magnitude of

the negative entry (Section I-E21). The cores or files for the copies

are given by one of the following:

COREOUT = first core, second core,---, last core

or

FILEOUT - first file, second file,---, last file

Again negative entries may be used as above.

23. Setting an Input Value as a Sum or Product

The operation

ITEM - "SETVAL"

85

, ii i I i I

calculates an integer value as a sum or product and stores the value for

later use as an input value in another operation. The type of calcula-

tion is indicated by

MATH = "type of calculation"

where the possibilities are the following:

"SUM" - sum of values

"DIF" - difference of two values

"PRODUCT" - product of values

The integer values in the calculation are given as

TERMS = value, value, value, ---

and the storage location by

VALOUT = location

where the location is a positive integer. Negative entries of TERMS re-

fer to values stored by previous usage of "SETVAL". The maximum number

of values that can be included in the calculation in NVALMX, and the

maximum storage location in DVAL, both of which can be changed by global

edits. The storage here has nothing to do with that for surfaces

(curves).

The operation "SETNUM" sets integer values as in the grid code,

Section I-Cl, Vol. III.

24. Projection onto a plane

The operation ITEM="SCALE" (Section I-E3) with a zero entry in

SCALE, and unity for the other two values, will have the effect of pro-

jecting a surface(curve) onto the plane corresponding to the zero entry.

86

25. Cartesian coordinates at numbered points

The operation

ITEM-"POINT"

sets the Cartesian coordinates, given in R(3), of a numbered point indi-

cated by the positive integer given for POINT (cf. Section I-B9):

$INPUT ITEM = "POINT", POINT - , R - , , $

Note that R can be set by a previous use of "GETEND" (Section 1-

Et3), and is omitted in that case.

26. Surface parametric coordinates of a surface(curve)

The operation

ITEM ="CORPAR"

genirates the values of the surface parametric coordinates for each

point on an existing surface(curve) constructed on a curved surface. The

curved surface must have been splined by operation ITEM="SPLINE" (Sec-

tion I-El5), of course. The parametric values can be stored by includ-

ing COREOUT or FILEOUT (Section I-B2), and can be printed by including

OUT="PRINT" (Section I-B5). This operation is useful in generating

boundary segments (i.e., values of the two parametric coordinates at each

point on a line of the curved surface) for input to the grid code (Sec-

tion I-C24 of Vol. III).

87

27. Distributing Points on a Surface with Specified Spacing

Distribution of points on an existing surface with the relative or

actual arc-length spacing specified at one or both edges in each direc-

tion, or at a specified point between the edges, is done by the opera-

tion

ITEM = "SURDIST"

The number of points to be placed on the surface is set by

POINTS = number in first direction, number in second direction

and the distribution is set by DISTYP and the associated distribution

parameters (Section I-B6). The :irst entry (or first pair of SPACE) of

each of these refers to the first direction on the surface, etc. The

spacings given will be taken as actual arc lengths if

RELATIV = "NO"

is included. The two entries in RELATIV here refer to the two direc-

tions on the surface. It is not necessary to include the total arc

length with relative spacings here since it is known from the input sur-

face. The spacing can be set in several ways as discussed in Section

I-B6.

The surface on which the points are to be placed must have been

generated prior to this operation. If this surface was generated oy the

preceding operation, it will automatically be available here. Other-

wise, its storage location must be given by including COREIN or FILEIN

(Section I-B3). Finally, if the point distribution is to be stored, the

storage location must be given (Section I-B2), and printing and/or plot-

ting can be called for (Section I-B5).

88

F. OTHER OPERATIONS

1. Relative Distribution

The setting of a set of relative distribution factors (monotonic on

0-1) is involved in many operations, and is normally done in that con-

nection by including DISTYP, or its equivalent, and the associated dis-

tribution parameters (Section I-B6) on the input statement for the

operaLion. A di6Lribution can, however, be set separately by the opera-

tion

ITEM - "DISTRIB"

with DISTYP, etc., included. The number of points in the distribution is

given as

POINTS - number

Iere if actual arc lengths are given as the spacing (with RELATIV-"NO"),

it is necessary to also include the total arc length as

TOTARC - total arc length

The N-point distribution is placed in the array DISTRIB(N,1).

2. Arc Length on a Curve

The arc length (actually chord length) at each point on an existing

curve can be calcilated by the operation

ITEM - "ARC"

The number of points on the curve is given as

POINTS = number

89

If this curve was generated by the preceding operation, it will automat-

ically be available here. Otherwise, its storage location must be in-

cluded as COREIN or FILEIN (Section I-B3). The arc lengths at the N

points are placed in the array ARCLEN(N).

3. Unit Tangent and Principal Normal, Curvature and Arc Length
on a Curve

The unit tangent and principal normal, curvature, and arc length at

each point on an existing curve can be calculated by the operation

ITEM = "CURVEC"

The number of points on the curve is given as

POINTS = number

If this curve was generated by the preceding operation, it will automat-

ically be available here. Otherwise, its storage location must be in-

cluded as COREIN or FILEIN (Section I-B3). If the curve is a straight

line it is necessary to include

ORIGIN = three Cartesian coordinates

to specify a point off the line to define the principal normal. The

tangent, normal, curvature, and arc length at the N points are placed

in the arrays TANGEN1(3,N,1), NORMAL(3,N,I), CURVAT(N), and ARCLEN(N).

4. Unit Tangents and Normal on a Surface

The two unit tangents and the unit normal at each point on an ex-

isting surface can be calculated by the operation

ITEM - "SURVEC"

The number of points in the two directions on the surface are given by

POINTS = number in first direction, number in second

90

[f this surface was generated by the preceding 'operation, it will auto-

matically be available. Otherwise, its storage location must be given

ar, COREIN or FILEIN (Section I-B3). The tangents and normal at the

N1xN2 points are placed in the arrays TANGEN1(3,Nl,N2), TANGEN2(3,Nl,

N,)), and NORMAL(3,N1,N2).

91

G. ERROR MESSAGES

ALL FOUR CORNERS ARE REQUIRED

This occurs when not all four corners of a tensor-product surface

(Section I-D8) have been designated. Four "SETCOR" operations must pre-

cede the "TENSUR" operation.

ALL FOUR EDGES ARE REQUIRED

This occurs when not all four edges of a transfinite interpolation

surface (Section I-D7) have been designated. Four "EDGECUR" operations

must precede the "TRANSUR" operation.

ANGLES APPEAR TO BE IN RADIANS

This warning is given when a non-zero value less than 2n in magni-

tude is given for ANGLE, because values for ANGLE must be given in de-

grees. This is only a warning, since a small angle may be actually

intended.

<ANGPTS> IS REQUIRED

This occurs when the number of rotation angles for the generation

of a surface by rotation of a curve (Section I-D4) is not specified.

AT LEAST 3 POINTS REQUIRED ON CONNECTING CURVES

At least 3 points must be called for in CURVES on the conne(cting

curves between two tab curves (Section I-D3,C3).

92

AT LEAST 5 POINTS NECESSARY FOR SPLINE

A curve must have at least 5 points in order to be splined (Section

I-E15).

AT LEAST 2 ROTATION POSITIONS REQUIRED
AT LEAST 2 STACKING POSITIONS REQUIRED
AT LEAST 2 BLENDING POSITIONS REQUIRED

This occurs when only one position is prescribed for a surface to

be created by rotation, stacking or blending curves (Section I-D4,D5,

D6). This would not create a surface.

<AXCOS> OR <COSINES> MUST BE A UNIT VECTOR

This occurs when an axis tangent (AXCOS), or the z-axis of a ro-

tated system(COSINES), is not given as a unit vector.

<AXCOS & NORCOS> CANNOT BE THE SAME

This occurs when the same unit vector is given for both the axis

tangent and principal normal when a surface is generated by stacking

curves (Section I-D5).

BAD FIRST CORE IN GROUP
BAD FIRST FILE IN GROUP

This occurs when multiple entries (Section I-B2,B3) are given for

COREIN or COREOUT (or for FILEIN or FILEOUT), and the first entry is

negative. A negative entry for a later entry indicates all cores(files)

from the preceding entry, i.e. 5,-9 means 5,6,7,8,9. The first entry,

however, must be positive.

93

BAD VALUE FOR ---

This occurs when an unrecognized value is given for the quantity

indicated. The acceptable values are indicated below.

OUT "PRINT, "PLOT"

FRAME "OLD", "NEW"

REWOUT "YES", "NO"

TRIAD "YES", "NO"

ITRIAD "YES", "NO"

FORM : "UNFORM", "LIST", "E"

IFORM : "UNFORM" , "LIST", "E"

REWIN "YES", "NO"

CHANGE "YES", "NO"

SIZE positive real

SYMBOL -1,0,1

TOTARC positive real

RELATIV "YES", "NO"

WIDTH positive real

SEMIAX positive real

LENGTH positive real

ANGLE : ANGLE(2) - ANGLE(1)1 S 360

ECCENT non-negative real

SYMTOT positive real

END "FIRST", "LAST", integer

MATH : "SUM", "SUM+1" , "DIF", "DIF-1" , "PRODUCT"

EDGE "LOWERI", UPPERI", "LOWER2", "UPPER2"

94

TYPE "CIRCLE", "CIRARC", "ELLIPSE", "ELLIARC", "PARABOL",
"HYPERBOL", "SPHERE", "SPHSEG", "ELIPSOID", "ELLISEG",
"ELLICONE", "ELLIPAR", "QUAD", "NATURAL"

TABTYP "NORNEG", "NORPOS", "TANNEG", "TANPOS", "BINNEG",
"BINPOS"

DISTYP "LINEAR", "BOTH", "TANH", "SINH", "INTERIOR" (and equiva-
lenced)

REORDER "SWITCH", "REVERSEI", "REVERSE2"

VALOUT positive integer

BAD VALUE FOR SPLINE END TYPE

This occurs when an unrecognizable e[Ld type is specified for the

spline (Section I-E15).

BOUNDING CURVES MUST HAVE SAME NUMBER OF POINTS

This occurs when the two boundary curves set for the generation of

.i surface by rotation ("ROTATE", Section I-D4), stacking ("STACK", Sec-

tion I-D5) or blending ("BLEND", Section I-D6) do not have the same num-

ber of' points.

CORE STORAGE LOCATION EMPTY

This occurs when a surface is asked for (by COREIN) from a core

storage location that has not been filled by a previous COREOUT (Section

I-B2).

95

CORE ;rORACE NUMBER TOO LARGE

This occurs when a core or file number is used which is larger than

the maximum allowed. Increase the indicated dimension parameter glob-

ally. The suggested value is adequate only for the present instance.

CORES & FILES CANNOT BE TREATED TOGETHER

This occurs when either both COREIN and FILEIN, or both COREOUT and

F1ILEOUT, are included. it is not possible to use input from, or output

to, both core and file storage simultaneously. It is possible, however,

to use input from one source and output from the other, or vice versa.

(Section I-B2,B3).

CORE OVERWRITTEN WITHOUT BEING USED

This warning occurs when a second surface is written into a cor,

zLorage location (with COREOUT, Section I-B2) without using the surface

already stored there.

CORNERS DO NOT MATCH

This occurs when the Cartesian coordinates of the ends of two edge:;

,t a corner of a transfinite interpolation surface (Section I-DI) ;ire

not coincident.

96

CORNERS MUST FORM A RECTANGLE

This occurs when the indices of the four corners set for a tensor-

product surface (Section I-D8) do not form a rectangle in computational

space.

<COSINES>

This o'curs when the new y-axis of a rotated system is not given as

a unit vector.

<CURPTS> IS REQUIRED

This occurs when the number of points on a curve is not specified

either directly or indirectly (Section I-B9).

<CURPTS & RADPTS> ARE REQUIRED

This occurs when the number of points in either the radial or an-

gular direction on a flat surface bounded by a conic-section curve (Sec-

tion I-DI) is not specified.

CURVE IS A POINT

This will occur when both end points of a cubic curve (Section

I-C2) are coincident in space (Use the "LINE" operation to deliberately

produce a degenerate curve). It will also occur when the number of

points on a curve is 1, but a curve is required.

97

CURVE IS A SURFACE

This occurs when the curve segment identified by START and END

(Section I-E9) is not a curve but a surface. Two entries of END must be

the same as the corresponding two entries of START.

CURVE IS OFF THE SURFACE

This occurs when the curve identified by START and END (Section

I-E9) does not lie entirely on the surface, i.e., some index of START or

END is not within the dimensions of the surface.

<CURVES> IS REQUIRED

This occurs when the number of curves to be on a surface generated

by blending two curves (Section I-D6) is not specified.

CURVE MUST HAVE AT LEAST 3 POINTS

At least three points are necessary on the curve.

CURVE MUST HAVE AT LEAST 4 POINTS

Specified spacing on both ends of a curve requires at least. four

points on the curve (Section I-Cl).

DEGENERATE CURVF

Two successive points on the curve are coincident.

98

DEGENERATE CONNECTING CURVES

This occurs when a patch surface is generated connecting two tab

curves (Section I-D3,C3), and the tab curves are coincident.

DIMENSIONS EXCEEDED : N1,N2 .

This occurs when the dimensions of a surface exceeds the maximum

allowed. Increase the dimension parameters DIMI and DIM2 globally. The

suggested values are adequate only for the present instance.

<EDGE> IS REQUIRED

This occurs when the particular edge intended for a transfinite

interpolation surface (Section I-D7) is not specified.

EDGES DO NOT MATCH

This occurs when two opposite edges set for a transfinite interpo-

lation surface (Section I-D7) do not have the same number of points.

END> IS REQUIRED

This will occur when a spacing is being set from another curve

(Section I-D1O), but the particular end ("FIRST" or "LAST") of the other

curve from which the spacing is to be taken is not indicated. It will

also occur with the "GETEND" operation (Section I-E13) when the end

("FIRST" or "LAST") for which the selected point is to be used is not

indicated.

99

EXTRACTION IS OFF THE SURFACE

This occurs when the section indicated for extraction is not con-

tained on the surface. Check START and POINTS.

FEMALE SURFACE LOCATION REQUIRED

This occurs when no female surface is indicated for an intersection

(Section I-C5).

FEMALE SURFACE MUST BE AT LEAST 5X5

The female surface must be at least 5x5 in order to be splined

(Section I-C5).

FEWER OUTPUT CORES THAN INPUT CORES
FEWER OUTPUT FILES THAN INPUT FILES

This occurs when cores or files are being copied (Section I-E22) and

the total number of copies indicated (COREOUT or FILEOUT) is less than

the total number of originals indicated (COREIN or FILEIN).

FILE OVERWRITTEN WITHOUT BEING USED

This occurs when a file is overwritten (by FILEOUT, Section I-B2)

being used. This will occur harmlessly with the "COMBINE" operation.

FILE STORAGE NUMBER TOO LARGE

See CORE STORAGE NUMBER TOO LARGE.

100

FIRST POINT NOT SET

This occurs when a point number, instead of the three Cartesian

coordinates, is given for RI (the first point on a curve), but no coor-

dinates have been previously attached to that point number by "POINT"

operation (indirect addressing, Section I-B9).

IDENTICAL BOUNDING CURVES

It is necessary to designate two bounding curves when a surface is

to be created by blending (Section I-D6).

IDENTICAL TAB CURVES

Two tab curves must be designated before the "PATCH" operation

(Section I-D3,C3) is invoked.

INNER ITERATION DOES NOT CONVERGE

This occurs when the Newton iteration along the curves of the male

surface does not converge in determining an intersection (Section I-C5).

Check to see if the 2 curves on the male surface really can intersect

the female surface. If it is the E1 curves that intersect, use an

ITEM="SWITCH" on the male surface before the "INTSEC" operation.

<ITERMS> IS REQUIRED

This occurs when no terms for the calculations are given (Section

I-E23).

101

LAST POINT NOT SET

See FIRST POINT NOT SET. Here R2 (the last point on a curve) is in

question.

LATITUDE MUST BE POSITIVE

This occurs when a negative value is given for a latitude angle

defining a conic-section surface (Section I-D2). Latitude angles must

range on 0-180.

LINEAR DISTRIBUTION WITH <DISTYP> NOT LINEAR

This occurs when the spacing specified is such as to produce a

linear distribution, but a nonlinear distribution has been callea for

(Section I-B6). Change DISTYP (or equivalenced quantity) to "LINEAR".

<LONPTS & LATPTS> IS REQUIRED

This occurs when the number of points in either the longitudinal or

latitudinal direction on a conic-section surface (Section I-D2) is not

specified.

MALE SURFACE MUST BE AT LEAST 1X5

The male surface must be at least 1x5 in order to be splined along

the 2 curves (Section I-C5).

102

<MATH> IS REQUIRED

This occurs when the type of calculation has not been given (Sec-

tion I-E23).

NEGATIVE OR ZERO RESULT

This occurs when the calculation for a number, of points to be

stored (Section I-E23) produces a non-positive number.

NEWTON ITERATION DOES NOT CONVERGE

This occurs when the Newton iteration for the surface parametric

coordinates from the Cartesian coordinates does not converge. Probable

cause is a strangely shaped surface.

NO AXIS

This occurs when no axis curve has been designated from the genera-

tion of a surface of stacking curves (Section I-D5).

NO BOUNDING CURVE SET

This occurs when no bounding curve for the generation of a surface

by rotation ("ROTATE", Section I-D4), stacking ("STACK", Section I-D5)

has been set.

NO OUTPUT FILE OR CORE

This occurs when an output file (FILEOUT) or core (COREOUT) is ex-

pected but none is given (Section I-B2).

103

NO STORED VALUE FOR ---

This occurs when a negative value, indicating by magnitude the

storage location of a value previously stored by a "SETNUM" or "SETVAL"

operation (Section I-E23), is given for the noted quantity, but no

value has actually been put in the location indicated.

NO STORED VALUE IN LOCATION

This occurs when a term of the calculation is indicated by a nega-

tive number to have been previously stored by a "SETNUM" or "SETVAL"

operation (Section I-E23), but no value has actually been stored in that

location.

NO SURFACE

This occurs when a surface(curve) is being generated on a curved

surface, but the surface has not yet been splined (Section I-BIG).

<NORCOS>, OR <COSINES>, MUST BE A UNIT VECTOR

This occurs when a normal vector (NORCOS), or the new x-axis of a

rotated system (COSINES), is not given as a unit vector.

NOT A SURFACE

This occurs when one of the dimensions of the surface is given as

1, but a surface is required.

104

NOT ENOUGH POINTS GIVEN

This ocours when the total number of triadq (diads in 2D) of Car-

ti sian coordinate values given in VALUES when reading points from the

namelist (Section I-E16) is less than the number indicated on the sur-

face by POINTS.

OUTER ITERATION DOES NOT CONVERGE

This occurs when the Newton iteration on the female surface does

not converge in determining an intersection (Section I-C5). See also

the notes on the inner iteration not converging.

POINT IS OFF THE CURVE

This occurs when the point selected is off the curve(surface),

i.e., the point indices exceed the surface dimensions.

<POINT> IS REQUIRED

This will occur when the number intended for a point is not given

with the "POINT" operation (Section I-E25). It will also occur with the

"GETEND" (Section I-E13) or "CURTAB" (Section I-Eli) operations when the

point to be selected is from the curve(surface) is not indicated. It

will also occur with the "SETCOR" operation (Section I-E8) when the in-

dices for the surface corner are not given.

105

<POINTS> IS REQUIRED

This will occur when the number of points on a curve, or the dimen-

sion of a surface, is not indicated either directly or indirectly (Sec-

tion I-B9). It will also occur when a surface is being read from a file

(by FILEIN, Section I-B3), or from the namelist (with VALUES, Section

I-E16), and the dimensions of the surface are not given.

<RI & R2> ARE REQUIRED

This occurs when either of the end points of a line (Section I-C'4)

is not specified.

<R & T> ARE REQUIRED

This occurs when either the point, or the unit tangent, for the end

of a cubic curve (Section I-E14) or a tab point (Section I-E12) Is not

specified.

<R1 & Ti> ARE REQUIRED
<R2 & T2> ARE REQUIRED

This occurs when either the point, or the unit slope vector, for an

end point of a cubic (Section I-C2) is not specified.

<R> IS REQUIRED

This occurs when no Cartesian coordinates are specified for the

point (Section I-E25).

106

<R,T1 & T2> ARE REQUIRED

This occurs when either the point, or one of the two unit slope

VP(:tors, for the corrier of the tensor-product surface (Section I-E8) is

riot specified.

<RADIUS> IS REQUIRED

This occurs when the radius of a circle or sphere is not specified.

<SCALE> IS REQUIRED

This occurs when no scale factors are given (Section I-E3). (Val-

ues intended as unit do not have to be included.)

<SEMIAX> IS REQUIRED

This occurs when the semi-axes of an ellipse or ellipsoid are not

specified.

<SNUMER> IS REQUIRED

This occurs when a scale factor is being calculated as a ratio, but

no numeration is given.

<SPACE> IS REQUIRED

This occurs when either of the two spacings at a corner of the ten-

sor-product surface (Section I-DS) is not specified.

107

<SPACE> IS REQUIRED WITH NORMAL TABS

When normal tabs are used for a patch surface (Section I-D3), the

spacing on the tab must be specified.

SPACING & LOCATION REQUIRED

Both the spacing(SPACE) and the arc-length location(ARCINT) must be

specified when an interior spacing is set (Section I-B6).

SPACING EXCEEDS TOTAL ARC LENGTH

This will occur when an absolute spacing is given, i.e., wiLh

RELATIV="NO", that exceeds the total arc length of the curve. It will

al3o occur in like manner with the "DISTRIB" (Section I-B6) operation

when the spacing exceeds the specified total arc length, TOTARC.

<START & END> ARE REQUIRED

This occurs when either of the two points that identify the curve

segment (Section I-E9) is not specified.

<START> IS REQUIRED

This occurs when the starting point for insertion (Section I-E19)

or extraction (Section I-E20) is not specified.

SURFACE IS A CURVE

This occurs when one dimension of the surface is 1, but a surface

is required.

108

SURFACE MUST BE AT LEAST 3X3

The surface must have at least 3 points in each direction.

SYSTEM RESTRICTED FILE NUMBER

Certain file numbers are reserved for system usage. These restric-

tions will be peculiar to the particular installation, and the checking

statement in subroutine PUT can be changed to fit the local restric-

tions.

<Ti>, OR <T>,MUST BE A UNIT VECTOR
<T2> MUST BE A UNIT VECTOR

This occurs when a slope vector is not given as a unit vector.

TAB & BOUNDING CURVE OPERATIONS CANNOT BE MIXED

This occurs when a tab curve and a bounding curve have both been

designated. An operation involving tab curves must be completed before

another operation involving bounding curves can be begun, and vice

versa.

TAB CURVE MUST HAVE AT LEAST 3 POINTS

This occurs when an edge of a surface that has less than thrue

points is designated as a tab curve (Section I-E1O) for a patch surface.

TAB CURVES MUST HAVE SAME NUMBER OF POINTS

This occurs when the two tab curves (Section I-D3) set do not have

the same number of points.

109

<TABTYP & EDGE> ARE REQUIRED

This occurs when either TABTYP or EDGE is omitted. The type of tab

must be set by the former to be a normal or tangent to the surface, and

an edge of the surface must be designated by the latter to be the tab

carve.

<TABTYP> IS REQUIRED

This occurs when no type of the tab is given. The tab must be des-

ignated to be either a tangent or normal to the surface.

<TERMS> IS REQUIRED

This occurs when no terms for the calculation are given (Section

I-C23).

TOO MANY BOUNDING CURVES

This occurs when more than two bounding curves have been set for a

surface generated by rotation (" ROTATE", Section I-D4), stacking

("STACK", Section I-D5). The operation must be invoked after two bound-

Ing curves are set.

TOO MANY CORES AT ONCE ---
TOO MANY FILES AT ONCE ---

This occurs when the total number of cores or files given exceed3

the maximum allowed (Section I-B2,B3). Increase the indicated dimension

parameter globally. The suggested value is adequate only for the pre's-

ent instances.

110

rOO MANY CORNERS

This occurs when more than four corners are set for a tensor-prod-

uct surface (Section I-D8). The "TENSUR" operation must be invoked af-

ter four corners have been set.

TOO MANY EDGE CURVES

This occurs when more than four edge curves for a transfinite in-

terpolation surface (Section I-D7) are set. The operation "TRANSUR"

must be invoked after four edge curves have been set.

TOO MANY POINTS FOR CORE STORAGE

This occurs when the dimensions of a surface are too large for the

core storage array (Section I-B2). Increase DIMSS globally. (The sug-

gested value is adequate only for the present instance.)

TOO MANY POINTS

This indicates that the point number given exceeds the maximum al-

lowed (Section I-B9). The dimension parameter DPNT must be increased

globally. The suggested value is only adequate for the present point

number.

TOO MANY TERMS

This indicates that the number of terms allowed has been exceeded

kSection I-C23). Increase the dimension parameter NVALMX. The suggested

value is adequate only for the present instance.

I11

TOO MANY VALUES STORED

This indicates that the storage locations for calculated values

(Section I-C23) have been exhausted. Increase the dimension parameter

DVAL. The suggested value is adequate only for the present instance.

TOTAL ARC LENGTH REQUIRED

This occurs when a relative spacing (RELATIV="NO'9 is indicated, but

no total arc length is available. The total arc length must be speci-

fied in this case by including TOTARC.

TOTAL ARC LENGTH REQUIRED WITH NORMAL TABS

With relative spacing (RELATIVE="NO") on normal tabs for a patch

surface (Section I-D3), a total arc length for the connecting curves

must be specified by including TOTARC.

TOTAL ARC LENGTH TOO SMALL

This will occur when relative spacing is used in the generation of

a patch surface between two tab curves (with ITEM-"PATCH", Section I-D3)

and the total arc length specified by TOTARC is less than the straight

line distance between the tab curves. It will also occur in like manner

of a cubic curve (ITEM="SCURVE", (Section I-D2).

<TOTARC> REQUIRED WITH RELATIVE SPACING

This occurs when a distribution function is being generated (Sec-

tion I-El) with relative spacing specified, but no total arc case is

specified.

112

TWO BOUNDING CURVES REQUIRED

Two bounding curves must be des3ignated for the generation of a sur-

facc by blending curves, i.e., two "BOUNCUR" operations must precede the

"BLEND" operation.

TWO TAB CURVES REQUIRED

This occurs when only one tab curve has been designated from a patch

surface (Section I-D3. Two tab curve operations ("GENTAB", "EDGETAB",

"SETTAB", "CURTAB") must precede the "PATCH" operations.

<TYPE> IS REQUIRED

This will occur when the type of a conic-section curve ("CONICUR")

operation, or a conic-section surface ("CONISUR" or. "FLATSUR" opera-

tion), is not given.

UNKNOWN NAMELIST ITEM

This occurs when an unrecognizable operation is invoked, i.e., for

ITEM.

<VALOUT> IS REQUIRED

This occurs when no storage location for the calculated value is

specified (Section I-C23).

<WIDTH & LENGTH> ARE REQUIRED

Both the width and length for an open circular or parabolic arc

must be specified.

113

<WIDTH, LENGTH, & ECCENT> ARE REQUIRED

The width, length, and eccentricity of an open elliptical arc must

be specified.

<WIDTH, LENGTH, & SYMTOT> ARE REQUIRED

The width, length, and asymptote angle must be specified for a hy-

perbolic arc.

ZERO ARC LENGTH

Two successive points on the curve are coincident.

ZERO NORMAL

This occurs when neighboring points on a surface are coincident.

114

PART II - CODE OPERATION

A. PARAMETERS AND VARIABLES

The surface dimension parameters are the integers DIMI and DIM2,

which are *he maximum dimensions of a surface that can be handled. The

miximum number of points allowed on a curve is DIMI. These are set by

identical PARAMETER statements in each routine in which they are in-

volved, and therefore can be changed by global edits.

1. Primary Arrays

The primary arrays, which are transferred between routines by

COMMON/RAY/, are the following:

CORD (3,DIM1,DIM2) or - three Cartesian coordinates of grid points on a

CORDT(3,DIM1,DIM2) surface. (real) (The array CORDI is used to

input a surface to a routine to be changed, with

the result being returned in the array CORD.)

NORMAL(3,DIM1 ,DIM2) - three Cartesian components of the normal to a

surface. (real)

TANGEN1(3,DIMI,DIM2) and - three Cartesian components of the tangents to

TANGEN2(3,DIMI,DIM2) the two families of grid lines on a surface.

(real)

ARCLEN(DIM1) - arc length at each point on a curve. (real)

CIJRVAT(DIM1) - curvature at each point on a curve. (real)

DISTRIB(DIM1,2) - two sets of relative distribution factors, with mono-

tonic variation on 0-1. (real)

CURV(3,DIM1,4) - three Cartesian coordinates of points on four edge
curves from which a surface is interpolated. (real)

rABVEC(3,DIM1,2) - three Cartesian components of slope vectors on two
curves between which a surface is to be constructed.

(real)

AXIS(3,DIMI) - three Cartesian coordinates of points on a space curve to

be used as an axis along which curves are stacked to
form a surface. (real)

115

SCALE(3,DIMI) - three scale factors for the Cartesian components at each

point on a surface. (real)

2. Surface(Curve) Parameters

The surface(curve) parameters, which are transferred between rou-

tines through COMMON/PAR/, are as follows:

POINTS (2) or - the two dimensions of a surface. (integer) (The array
POINTSI(2) POINTSI is used in reference to a surface being input to

a routine.)

POINTS(1), POINTS(2)

POINTS is equivalenced with N1,N2; POINTSI with NIl, N12; POINTS(1) with

N; and POINTSI(l) with NI. The following equivalences are also made

(all integer):

POINTS(1)

LONPTS number of longitude points

CURPTS number of points on a curve

POINTS(2)

LATPTS number of latitude points
ANGPTS : number of angular points
RADPTS : number of radial points
TABPTS : number of points on a tab curve
AXPTS : number of points on the axis of a stack
CURVES : number of joining curves

116

START(2),END(2) - the two curvilinear coordinates of each of two oppo-

site corners defining surface segment. (integer)

END(1), END(2)

.START(1), START(2)

START is equivalenced with POINT, the two curvilinear

coordinates of a point to be selected from a surface,
and with REORDER, the indicator for coordinate switch-
ing and reversal.

LAT(2),LON(2) - two latitude and longitude angle limits for conic-sec-

tion surfaces. (real)

SEMIAX(3) - three semi-axes for an ellipsoid. (real) SEMIAX is equiva-
lenced with WIDTH(2) and with RADIUS, also conic section

curve parameters.

ORIGIN(3) - three Cartesian components of the new origin in a transla-
tion. Also coordinates of point defining a normal to a
line. (real)

ANGLE(2) - two angle limits. (real)

Rl(3),R2(3) - three Cartesian coordinates of the end points of a curve.
(real)

PARAM(3,3) - matrix of nine rotation parameters. (real)

PARAM is equivalenced with COSINES for rotation described

by the nine direction cosines, and with EULER for rotation

described of the three Euler angles. COSINES, in turn, is

equivalenced as follows (all real):

COSINES(1,1) with NORCOS(3) : direction cosines of prin-
cipal normal to an axis

COSINES(1,3) with AXCOS direction cosines of an axis

117

TYPE - type of surface(curve). ("---")

LENGTH, ECCENT, SYMTOT - conic-section parameters. (real)

TABTYP - type of tab used to generate a connecting surface. ("---")

EDGE - type of edge to which a connecting surface is attached. "---")

3. I/O Parameters

The I/O parameter array dimension parameters are the following:

DIMSS - total number of points that can be stored on core. (integer)

DIMV - maximum number of points that can be read for a surface(curve)
from the namelist. (integer)

DFIL - maximum number of surfaces(curves) that can be stored on fije.
(integer)

DCOR - maximum number of surfaces(curves) that can be stored in core.
(integer)

DVAL - maximum number of values that can be stored for input as values

of quantities on the input statements. (integer)

NVALMX - maximum number of terms that can be involved in the calcula-
tion of a stored value. (integer)

DPNT - maximum number of numbered points. (integer)

These are set by identical PARAMETER statements in the main program and

in subroutines PUT and GET. From these parameters, the integers DFIL4,

DCOR4, and DIMV3 are calculated as the indicated multiples, i.e.,

DFIL4 - 4*DIFL.

The input/output arrays and parameters, transferred between rou-

tines through COMMON/IO/, are the following:

STORE(3,DIMSS) - core storage array. (real)

NSTOR(DCOR) - core storage segment numbers array

LSTOR(DCOR) - core storage location numbers array

118

FTLfS(0:'4,-?:DFIL) - file parameter array. (integer)

CORES(O:14,DCOR) - core parameter array. (integer)

VAL(IJES(DIMrV3) - array for input of surface from namelist. (real)

RrlN(3),RMAX(3),VIEW(3),STZE(2) -plot parameters. (real)

SYMI3OL,NI'LOT - plot parameters. (integer)

FRAME -plot parameter.

OIJT(2) -type of output. (L..H

NSTORE,MSTORE -core storage segment number

LSTORE - core storage location number

PSTORE - core storage parameter. (integer)

CORIN,COROUT - core storage numbers. (integer)

FILIN,FILOlJT - file storage numbers. (integer)

L/W31N,fABOIJT - labels for input/output. (--'

HE:WTN,REWOUT - file rewind indicators. ("--")

NC1,NC2 - dimensions of current surface. (integer)

FORM,TRIAD,HEAD,NHEAD - file format parameters. Of.... 1)

4. Distribution Parameters

The point distribution parameters, which are transferred between

routines in COMMON/DISTRI! are the following:

DISTYP(2) -type of distribution. (11--- 1)

RELATIV(2) -relative distribution indicator.("-)

SPACE(2,2) -two spacings for each of two curves. (real)

TOTARC - total arc length. (real)

119

5.Spline Parameters

The spline parameters, transferred in COMMON/SPLINE!, are

SUR(3,DItMI,DIM2,O:3) - three Cartesian components off surface spline
array. (real)

CTJR(3,DIM1,0:1) - three Cartesian components of curve spline array.
(real)

120

H. INPUT AND SETUP

The code operates by responding to successive reads of NAMELIST/IN-

PUT/, with the action on each read determined by an alphanumeric value

given to the integer ITEM. Defaults are reset after each read. Stan-

dard values are set for all input quantities for which a value can be

anticipated, and recognizable unreasonable values, e.g. zero for a

number of points or a radius, are assigned to input quantities which

must be included, so that error checks can be made for omitted required

quantities. The input stops when ITEM-"END" is encountered.

After each read, the code first sets the values of the input pa-

rameters that can be set from stored values, if such is indicated, on

the present read (Section I-B7).

After setting parameters from stored values, spacings are set from

existing segments if called for, and the Cartesian coordinates for

numbered points are taken from the array RPOINT(3, point number) if such

is indicated (Section I-B9).

The code then checks for violation of dimension limits or bad input

values. The plotter is then initialized if plotting is called for on

the present read, and none has been done before, by calling the system

routines COMPRS and CROSS, and then resetting the integer SETPLT from

the default "NO" to "DONE" to indicate that the initialization has been

done. The code next performs any needed conversion of direction cosines

(values in the array COSINES greater than one in magnitude are taken to

be angles in degrees and are replaced by the cosine thereof) and sets up

storage files and/or cores for combination or treatment of multiple

files or curves (Section I-B2).

121

Some operations, such as combination of files and/or cores and

transformation or scaling of several surfaces, involve groups of file:;

and/or cores. Consequently, COREOUT, COREIN, FILEOUT, and FILEIN are

arrays dimensioned by the integers DCOR and DFIL, respectively. After

each NAMELIST read, and before the action called for by the read is

taken, the multiple files and/or cores are set up as follows.

The integer array CORES(4,DCOR), with 1 and 2 for the first sub-

script, contains the dimensions NI,N2 for each surface in core storage.

The value 3 for this first subscript is used to store the core storage

numbers, COREIN, for a group of stored surfaces to be combined or simul-

taneously scaled or transformed. Similarly the value 4 for the first

subscript is used to store a group of core storage numbers, COREOUT, to

receive the scaled or transformed results. The integer array FILES

(4,DFIL) serves in the same manner for file storage.

The core numbers supplied in the array COREIN on the NAMELIST are

placed successively in CORES with 3 as the first subscript and a

counter as the second. Negative entries in COREIN imply all core num-

bers from the preceding entry to the magnitude of the negative entry.

The total number of core locations in the group is placed in the integer

NCORI. Core numbers given in the array COREOUT are placed successively

in CORES with 4 as the first subscript in a similar fashion. If the

first entry of COREOUT is equal to "SAME", then the same core numbers

given in COREIN are taken for COREOUT. The total number of core loca-

tions in the group is placed in the integer NCORO. Analogous procedures

are applied for a group of files.

122

Since the number of output cores(files) and input cores(files) must

be the same, except in the "COMBINE" operation (Section I-B21), a check

is made for inequality. Finally, CORIN and COROUT are set to the first

entries in COREIN and COREOUT respectively (these are the core storage

numbers that are transferred through COMMON/IO/ to subroutines GET and

PUT), and NSTOI and NSTOO are set to the maximum number of files or

cores for input and output, respectively.

123

C. RESPONSES TO NAMELIST/INPUT

fhe actions taken as a result of the read of the NAMELIST are as

follows, depending on the value given for ITEM. These operations are

explained in Part I. In the following discussion, reference to placing

N points in an array A is made by referring to "the array A(N)". Upper-

case letters thus indicate a set of elements. Similarly, the placing of

three vector components for each of N points uses the terminology

A(3,N). Specific elements are referred to using lower-case letters,

i.e., A(n) means element n of A, and it should be clear from the context

when a specific element is meant to be implied by a number. When no

confusion should arise, the first element of an array A(2) is referred

to simply as A, and similarly the first two elements of A(2,2) are

referred to as A(2). Also, surface dimensions are often indicated in

arrays such as CORD(3,NI,N2) for information only, and chould not be

taken to imply dimensions of the array (which are always DIM1,DIM2).

Several operations are used throughout the various actions result-

ing from the NAMELIST reads:

1. Storing, printing, and plotting a surface (Section I-B2)

This is accomplished by a call of subroutine

PUT(surface, dimension, dimension)

with the real surface array, CORD, as the first argument, and the inte-

ger dimensions of the surface transferred to the subroutine as the

second and third arguments, typically N1,N2 for surfaces and N,1 for

curves. Other parameters are transferred through COMMON/IO/. Core

storage numbers are specified by the Integer COREOUT, and file storage

124

numbers by the integer FILEOUT, on the read. In some operations, multi-

ple storage numbers can be given, and consequently these two parameters

are actually integer arrays dimensioned DCOR and DIFL, respectively.

The form of the file is controlled by FORM. Also REWOUT="NO" prevents

rewinding a file before storage, and LABOUT-"--" supplies an optional

8-character label to be printed. Printing and/or plotting is done if

the array OUT(2) contains the values "PRINT" and/or "PLOT", in either

order. For plotting, the limits of the plot can be given in the arrays

RMIN(3) and RMAX(3), the viewpoint in the array VIEW(3), the size on the

screen in the array SIZE(2), and a symbol specification in SYMBOL. Also

if FRAME-"NEW" is given, the plot will be on a new frame; otherwise it

will be added to the previous plot to form a composite.

2. Retrieval of a surface (Section I-B3)

This is done by a call of subroutine

GET(surface, dimension, dimension)

with the real surface array, CORD or CORDI, as the first argument, and

the integer dimensions of the surface transferred from the subroutine as

the second and third arguments (typically N1,N2 or NI1,NI2). Other

parameters are transferred through COMMON/IO/. Core numbers are speci-

fied by COREIN, and file numbers by FILEIN on the input. In some opera-

tions, multiple storage numbers can be given, and consequently these two

parameters are actually integer arrays dimensioned DCOR and DFIL, re-

spectively. The form of the file is controlled by FORM. Also,

REWIN-"NO" prevents rewinding a file before reading, and LABIN-"---"

supplies an)ptional 8-character label to be printed. Any entries in

125

VALUES will cause the surface to be read from this array in the NAME-

LIST, instead of from core or file. (VALUES(1) is defaulted to "NONE"

and is checked for a change on the read.)

3. Relative distributions (Section I-B6)

This is accomplished by a call of subroutine

RELDIST (type, spacings, interior point, dimension, distribution)

with the alphanumeric type of distribution as the first argument, a real

array of two spacings as the second, the integer location of an interior

point at which spacing is specified as the third, the integer number of

points in the distribution as the fourth, and the returned real distribu-

tion array as the last. Of these arguments, the first (the distribution

type) is supplied by the integer DISTYP(_), or one of the several simi-

lar parameters to which it is equivalenced. The spacings (a two entry

array in the argument list) are given in the real array SPACE(2,_), or

one of its equivalents. If an interior point spacing is specified, the

arc length location thereof is the second entry in the array SPACE. The

number of points in the distribution is set by POINTS(1), POINTSI(1), or

some equlvalenced parameter. The relative distribution is returned in

the real array DISTRIB(DIM,_). In all of these arrays the absent entry

is 1 or 2, this entry being 1 except when the distrioution is being set

for both directions on a surface.

126

4. Surface(Curve) Spline (Section I-B15)

Several operations can function on a curved surface as well as in

;paep or on a plane. In this mode the surface must be constructed and

splined before the operation in question is invoked. The spline is

contained in the array SUR(3,DIM1,DIM2,0:3), where the last subscript

refers to the points (0), the two tangents (1 and 2), and the cross-

derivative (3) at each point on the spline. The spline is generated by

SPLNSUR and is stored on file 8 by four successive calls of PUT with

FILIN=-2 and CORIN=O after rewinding. Whenever needed, the spline is

retrieved by four analogous calls of GET. The input value of FILIN is

preserved and restored after the spline is obtained.

5. ITEM="CURDIST" (Section I-El)

This operation distributes N points on an existing curve having NI

points, where N and NI are given as POINTS and POINTSI, respectively,

with specified spacing at either or both ends, or at an interior point.

The point distribution is determined by DISTYP and the array SPACE(2).

The operation first calls GET to place the existing curve in the array

CORDI(3,NI,1), and then calls ARCLNGT to calculate the arc length dis-

tribution on this curve in the array ARCLEN(NI). If RELATIV is equal to

"NO", the values given in SPACE are taken as actual arc lengths and are

therefore divided by the total arc length to produce relative spacings.

Subroutine RELDIST is then called to set the N distribution factors in

the array DISTRIB(N,1), 3nd CURDIST is called to distribute the N points

on the curve, placing the result in the array CORD(3,N,I).

127

The curve is splined in terms of chord length, and the point dis-

tribution is placed on the spline. If the curve has less than five

points, the points are left on the chords since the spline is not possi-

ble. Finally, PUT is called to store, print, and/or plot the curve.

6. ITEM-"DISTRIB" (Section I-B6)

This operation generates a set of N relative distribution factors,

where N is given by POINTS and the distribution is determined by DISTYP

and the array SPACE(2). If RELATIV is equal to "NO", the values given

in the SPACE array are divided by the value given for TOTARC to obtain

the relative spacings. Subroutine RELDIST is then called to set the

distribution factors in the array DISTRIB(N,1).

7. ITEM-"CURVAT" (Section I-E2)

This operation distributes N points on an existing curve with NI

points, where N and NI are given as POINTS and POINTSI, respectively,

concentrating the points where the curvature is greatest using a spline

fit. The operation first calls GET to place the existing curve in the

array CORDI(3,NI,1), and then calls SPARC to distribute the N points on

the curve, placing the result in the array CORD(3,N,1). Finally, PUT is

called to store, print, and/or plot the curve.

128

8. ITEM="ARC" (Section I-F2)

This operation calculates the arc length (actually chord length)

distribution on a curve with N points, with N given as POINTS. Subrou-

tine GET is called to place the curve in the array CORD(3,N,1), and

ARCLNGT is then called to calculate the arc length distribution, placing

the result in the array ARCLEN(N).

9. ITEM="CURVEC" (Section I-F3)

This operation calculates the unit tangent and principal normal,

the curvature, and the arc length distribution on a curve with N

points, N being given as POINTS. The operation calls GET to place the

curve in the array CORD(3,N,1), and then calls CURVEC to calculate the

various quantities on the curve, these being placed in the arrays

TANGENi (3,N,1), NORMAL(3,N,1), CURVAT(N), and ARCLEN(N), respectively.

10. ITEM="SURVEC" (Section I-F4)

This operation calculates the two unit tangents and normal on an

NI×N2 surface, with Ni and N2 given as the two entries in the array

POINTS(2). The operation calls GET to place the surface in the array

CORD(3,N1,N2), and then calls SURVEC to calculate the three vectors,

placing them in the arrays TANGENl(3,Nl,N2), TANGEN2(3,NI,N2), and

NORMAL (3,N1,N2), respectively.

129

I I . ITEM-"GETEND" (SECTION I-E13)

This operation selects a point on an N-point curve, with N given as

POINTS, for use as an end point of another curve to be constructed. The

operation first calls GET to place the curve in the array CORD(3,N,1).

The three Cartesian coordinates of the point on the curve given by POINT

are then placed in the array REND1(3) if the value of END is given as

"FIRST", and in REND2(3) otherwise.

12. ITEM="GENTAB"

This operation has two functions. If END is equal to "FIRST" or

"SECOND" it selects a single point, and an associated unit tangent or

unit normal, on a surface for later use as an end point of a cubic

space curve (Section I-C2), or as a corner of a tensor-product surface

(Section I-E8). Otherwise it selects a portion of a grid line, and the

tangents or unit normals thereon, on the surface for later use as an end

curve for a patch surface to be constructed of cubic curves (Section

I-D3). In either case the surface is an N1xN2 surface, with N1 and N2

given as the two entries in the array POINTS(2), and the operation first

calls GET to place the surface in the array CORDI(3,N1,N2).

In the first case, the selected point on the surface is indicated

by the two indices given in the array POINT(2). Subroutine GENTAB Is

called to return the three Cartesian coordinates of the selected point

in the array REND1(3) if END is equal to "FIRST", or in REND2(3) if END

is "SECOND". Similarly, the three components of the slope vector at the

130

point are returned in TEND1(3) or TEND2(3), the type of slope vector

being determined by the alphanumeric value given for TABTYP. These

vectors are then normalized to unit vectors.

In the other mode, the curve selected is defined by the coordinates

of its end points given in the arrays START(2) and END(2) (with one

entry the same in each), and the slope vectors are specified to be

tangents or unit normals to the surface by the alphanumeric value given

to TABTYP. In this second mode the normals are unit vectors, but the

tangents reflect the spacing on the surface. The counter NTAB is

incremented, and GENTAB is called to select the curve and generate the

slope vectors, placing the curve in the array CURV(3,NI,NTAB) and the

vectors in the array TABVEC(3,NI,NTAB), with NI equal to the difference

between the non-equal entries in START and END, plus one, and being

returned as POINTSI(1). Finally, this number of points is recorded in

NTBPTS for later use.

13. ITEM="EDGETAB" (Section I-EIO)

This operation functions as does the second mode for ITEM-"GENTAB"

above, except that the curve selected is an entire edge of the surface,

the particular edge being indicated by the value given to EDGE.

14. ITEM-"CURTAB"

This operation functions as does both modes of ITEM-"GENTAB" above,

selecting a point and associated slope vector for later use either with

a cubic curve (Section I-C2) or a tensor product surface (Section I-E8),

131

or with a patch curve (Section I-D3). In both cases the point selection

is indicated by POINT. Here NI is 1, of course, since only a point is

involved.

15. ITEM-"SETTAB" (Section I-El4)

This operation directly sets a point and a unit slope vector as an

end point for a cubic curve to be constructed, these being given in the

arrays R(3) and T(3), respectively. The operation increments the

counter NTAB, and places the point and slope vector in the arrays

CURV(3,1,NTAB) and TABVEC(3,1,NTAB), respectively, setting NTBPTS to I.

16. ITEM-"SETCOR" (Section I-E8)

This operation sets a point and two tangents for use as one of the

four corners of a tensor-product surface (Coon's patch). The three

Cartesian coordinates of the point are received in the array R(3), and

the components of the unit tangents in the arrays T1(3) and T2(3). If

any of these three arrays is not included on the input, the correspond-

ing values are taken from previously-set values in the arrays RENDI (3)

for R, or TEND1(3) for TI and TEND2(3) for T2.

The counter NTAB is incremented, and the two unit tangents are

multiplied by the spacings given in the array SPACE(2), and also by the

total arc length TOTARC if these spacings are relative. The two indices

of the corner given in the array POINT(2) are recorded in the array

NCORPT(2,_) with NTAB as the second subscript.

132

If NTAB Is equal to 4, i.e., if this Is the last corner to be set,

then the dimensions NIN2 of the surface to be constructed are deter-

mined from the indices of the four corners in the array NCORPT(2,4) and

a,-recorded in NCORPT(1,1) and NCORPT(2,2).

17. ITEM-"SCALE" (Section I-E3)

This operation scales one or more surfaces(curves). The three

scale factors, one for each Cartesian direction, are given in the array

SCALE(3,1). For each surface in succession the operation first calls

GET to place the surface in the array CORDI(3,N1 ,N2), with the storage

location, FILIN or CORIN, being obtained from FILES(3,i)-or CORES(3,i),

as appropriate, for surface i, and the surface dimensions, Ni and N2,

being taken from the arrays FILES(I,i) and FILES(2,i), or from

CORES(1,i) and CORES(2,i) (Section II-C2). This surface is then scaled

by calling SCAL, the scaled surface being placed in the array

CORD(3,N1,N2). Subroutine PUT is then called to store, print, and/or

plot the scaled surface. The storage location is obtained from

FILES(4,i) or CORES(4,i), as appropriate. These steps are repeated to

process all the surfaces indicated. Notations of the surfaces processed,

and their storage locations and destinations, are printed.

18. ITEM-"TRANS" (Section I-E4)

This operation functions exactly as does ITEM="SCALE" discussed

above, except that TRANS, instead of SCALE, is called to translate and

rotate, as well as scale, the surface(curve). The translation vector is

given in the array ORIGIN(3), and the rotation is specified by either

133

the nine direction cosines in the array COSINES(3,3) or the three Euler

angles in the array EULER(3). If CHANGE is equal to "YES", an ad hoc

change in the surface is made after the transformation. Code for this

ad hoc change must be inserted directly in the code since no input pro-

vision is made.

19. ITEM="CONICUR" (Section I-Cl)

This operation generates an N-point plane conic-section curve. The

number of points is given as POINTS, the type of curve is identified by

TYPE, and the relevant curve parameters are given as RADIUS, SEMIAX,

LENGTH, WIDTH, ECCENT, and SYMTOT. The extent of the curve is specified

by the two angles in the array ANGLE(2). The distribution of points oil

the curve is specified by DISTYP, INTER, and the array SPACE(2).

The operation first calls RELDIST to set the relative distribution

factors in the array DISTRIB(N,1), and then calls CONICUR to set the

points on the curve in the array CORD(3,N,1). Subroutine PUT is then

called to store, print, and/or plot the curve.

20. ITEM="SCURVE" (Section I-C2)

This operation generates an N-point cubic space-curve between two

points, with specified tangents at each end. The number of points is

given as POINTS, the Cartesian coordinates of the end points in the

arrays R1(3) and R2(3), and the corresponding unit tangents in the

arrays T1(3) and T2(3). If any of these end point arrays is not in-

cluded on* the input, the corresponding values are taken from previously-

134

assigned values in the arrays RENDl(3), REND2(3), TEND1(3), or TEND2(3)

(Section II-C12). The distribution of points on the curve is specified

by DISTYP and the array SPACE(2).

This operation can function either in space (including on a flat

surface) or on a previously constructed and splined curved surface. The

latter mode is activated by the value "CURVED" being given for SURFACE.

In this case the surface spline is obtained (Section II-C4), and the end

points are reset to the closest points on the spline by calling CORPAR

with RI and R2 as arguments. This replaces the three Cartesian coordi-

nates in Ri and R2 with two spline coordinates. Similarly, the three

components of the tangents in Ti and T2 are converted to the two deriv-

attves of the two splirie coordinates in the two directions on the sur-

face by calling TANPAR.

The operation then places the tangents in the array TABVEC(3,1,i)

for i-1,2. Subroutine SCURVE is then called to generate the curve in

the array CORD(3,N,i), and the curve is transferred to the array

CORDI(3,N,I) by a call to GET. (If the operation is on a curved sur-

face, the result produced by SCURVE is two surface parametric(spline)

coordinates for each point on the curve. Therefore PARCOR is called to

convert these to Cartesian coordinates of corresponding points on the

spline.) Next, ARCLNGT is called to calculate the arc length distribu-

tion on the curve, returning the result in the array ARCLEN(N). If

RELATIV is equal to "NO", the values in SPACE are taken to be arc

lengths and are converted to relative spacings by division by the total

arc length.

135

The total arc length, for multiplication by SPACE and the unit tan-

gents to form r_, is calculated as the straight line distance between

the end points.

Subroutine RELDIST is then called to set the relative distribution

factors in the array DISTRIB(N,I). Next POINTSI(1) is set to N, and

CURDIST is called to place the points on the curve according to the

specified distribution, returning the result in the array CORD(3,N,1).

Subroutine PUT is then called to store, print, and/or plot the curve.

21. ITEM-"FLATSUR" (Section I-DI)

This operation generates an N1xN2 plane surface bounded by a conic-

section curve (closed by straight lines if necessary). The number of

points on the circumferential curves is given as CURPTS, and that on the

radial lines is given as RADPTS. The type of curve is identified by

TYPE, and the curve parameters are given in RADIUS SEMIAX, LENGTH,

WIDTH, and SYMTOT. The extent of the conic-section curve is set by two

angles in the array ANGLE(2). The relative angular distribution of the

points on the circumferential curves is specified by DISTANG and the

array SPACCUR(2), and the relative radial distribution is specified by

DISTRAD the array SPACRAD(2).

1 36

The operation calls RELDIST twice, once to set the relative distri-

bution factors in the array DISTRIB(N1,1) for the points on the circum-

ferential curves, and once to set the factors in DISTRIB(N2,2) for the

points on the radial lines. Subroutine FLATSUR is then called to gener-

ate the surface in the array CORD(3,NI,N2), and PUT is called to store,

print, and/or plot the surface.

22. ITEM-"CONISUR" (Section I-D2)

This operation generates an N1xN2 conic-section surface, with the

number of longitude lines given as LONPTS and the number of latitude

lines by LATPTS. Th-. type of surface is identified by TYPE, and the

surface parameters are given as RADIUS, LENGTH, WIDTH, and ECCENT. The

extent of the surface is set by two longitude angles and two latitude

angles in the arrays LON(2) and LAT(2). The relative distribution of

longitude lines is specified by DISTLON, INTLON, and the array

SPACLON(2), and that for the latitude lines by DISTLAT, INTLAT, and the

array SPACLAT(2).

The operation calls RELDIST twice, once to set the relative longi-

tude distribution factors in the array DISTRIB(N1,1), and once to set

the latitude factors in the array DISTRIB(N2,2). Subroutine CONISUR is

then called to generate the surface in the array CORD(3,NI,N2), and PUT

is called to store, print, and/or plot the surface.

137

23. ITEM="SPLINE" (Section I-E15)

This operation generates a cubic spline for an N1xN2 surface

(curve). The surface is placed in the array CORD(3,N1,N2) by a call to

GET, and then is splined by a call to SPLNSUR. The spline, in the array

SUR(3,N1,N2,0:3), is stored on file 8.

24. ITEM-"INSEC" (Section I-C5)

This operation generates a space-curve as the intersection of two

surfaces. This intersection curve is composed of the intersections of

one family of curves on an N1xN2 intersecting surface with an NIlxNI2

intersected surface. The intersected surface is placed in CORDI

(3,NII,NI2) by a call to GET using the storage location given as COREIN

or FILEIN on the input. The intersecting surface is assumed to be in

current position in CORD(3,N1,N2). The intersected surface in CORDI is

splined by calling SPLNSUR, and INTSEC is called to calculate the

intersections, returning the intersection curve in CORD(3,N1,1) with Ni

points, i.e., the first dimension of the intersecting surface. Finally,

PUT is called to store, print, and/or plot the curve.

25. ITEM-"EDGECUR" (Section I-E7)

This operation designates a curve for later use as one of four,

edges of a surface to be constructed by transfinite interpolation. The

counter NCUR is incremented, and MCUR is set to 1,2,3, or 4 depending on

thp particular edge for which the curve is intended, as indicated by

138

EDGE. The curve is placed in CURV(3,N1,) by calling GET, and the number

of points on the curve is recorded in NCORPT(1,_), with MCUR as the last

subscript in each.

If NCUR is equal to 4, i.e., if this is the last curve needed, the

dimensions NI,N2 of the surface to be constructed are set from

NCORPT(1,3) and NCORPT(1,1).

26. ITEM="AXIS" (Section I-E6)

This operation prepares an N-point existing curve for use as the

axis along which curves are stacked to produce a surface. The number of

points on the axis curve is given as POINTS. The operation first calls

GET to place the axis curve in the array AXIS(3,N), and then calls

CURVEC to calculate the unit tangent, unit principal normal, and arc

length, at each point thereon, these being returned in the arrays

TANGEN1(3,N,1), NORMAL(3,N,1), and ARCLEN(N). The number of points on

the axis is recorded in AXPTS.

27. ITEM-"BOUNCUR" (Section I-E5)

This operation prepares an existing N-point curve for use as one of

a set of two interpolation bounding curves for the creation of a surface

by stacking, rotation or blending of curves. The number of points on

the bounding curve is given as POINTS. The operation increments the

counter NCUR and calls GET to place the bounding curve in the array CURV

(3,N,NCUR). If NCUR is 1, the value "SAME" is placed in CURV(1,1,2) to

139

default the second bounding curve to be identical to the first in case

no second use of this operation is made. The number of points on the

curve is recorded in NBNPTS.

28. ITEM="ROTATE" (Section I-D4)

This operation generates an NixN2 surface by rotating Ni-point

space curves to N2 angles. The number of points on the rotated curves,

NI, is obtained from NBNPTS, and the number of rotation angles, N2, is

given by ANGPTS. The curve to be rotated is interpolated between two

bounding curves that have been placed in the array CURV(3,Ni,2) by

previous invocations of ITEM-"BOUNCUR". The angular limits of the

rotation are given in the array ANGLE(2), and the direction cosines of

the rotation axis and its principal normal are given in the arrays

AXCOS(3) and NORCOS(3). The relative distribution of the rotation

angles is specified by DISTANG and the array SPACANG(2). The relative

distribution factors for the interpolation (between the two bounding

curves) for the curve to be rotated is determined either by DISTCUR and

the array SPACCU(2), or from a specified distribution function.

The operation first converts the angular rotation limits to radi-

ans, defaulting the second angle if no value has been set. Subroutine

RELDIST is called to set the relative distribution factors in the array

DISTRIB(N2,1) for the rotation angles. The relative distribution fac-

tors for the interpolation (between the two bounding curves) for the

140

curve to be rotated is determined in one of three ways: by DISTCUR and

the array SPACCUR(2); from a specified distribution function; or by the

arc length distribution on the axis.

If DISTCUR is equal to "CURVE", subroutine GET is called to place

an existing NI-point characteristic size distribution function in the

array SCALE(2,NI). In this case, the rotation angle distribution fac-

tors in the array DISTPIB(N2,1) are multiplied by the difference be-

tween the rotation limits (this difference being defailted to 2w if no

second limit is specified) to produce the N2 rotation angles which are

placed in the array ARCLEN(N2). Subroutine FACDIST is then called to

interpolate for the values of the normalized size distribution function

(in SCALE) at these rotation angles (in ARCLEN), placing the relative

distribution factors in the array DISTRIB(N2,2) for the interpolation

between the two bounding curves. If, however, DISCUR is not equal to

"CURVE", subroutine RELDIST is called to set these relative distribu-

tion factors in the array DISTRIB(N2,2) for the curve interpolation.

The surface is then generated in the array CORD(3,N1,N2) by calling

ROTATE. If NI is equal to 1, i.e., if a point is being rotated, SWITCH

is called with REORDER(1)="SWITCH" to switch the curvilinear coordinates

and put the resulting curve in CORD(3,N2,1). The counter NCUR for the

bounding curves is reset to 0, and the surface is stored, printed,

and/or plotted by calling PUT.

141

29. !TEM-"STACK" (Section I-D5)

This operation generates an NlxN2 surface by stacking N1-point

space curves at N2 positions along an axis. The number of points, Ni, on

the stacked curves is obtained from NBNPTS, and the number of positions,

N2, on the axis is obtained from AXSPTS. The curve to be placed at each

position is interpolated between two bounding curves that have been

placed in the array CURV(3,Nl,2) by previous invocations of ITEM=

"BOUNCUR". The axis curve will have been placed in the array AXIS

(3,N2) by a preceeding invocation of ITEM="AXIS". The direction cosines

of the stacking axis and its)rincipal normal in the axes system in

which the bounding curves are defined are given in the arrays AXCOS(3)

and NORCOS(3). The relative distribution factors for the interpolation

(between the two bounding curves) for the curve to be stacked is deter-

mined in one of three ways: by DISTCUR and the array SPACCUR (2); from

a specified distribution function; or by the arc length distribution on

the axis.

If DISTCUR is equal to "CURVE", subroutine GET is called to place

an existing NI-point characteristic size distribution function in the

array SCALE(2,NI). In this case, FACDIST is then called to interpolate

for the values of the normalized size distribution function (in SCALE)

at the axis arc length positions (placed in the array ARCLEN(N2) by

ITEM="AXIS"), placing the relative distribution factors in the array

DISTRIB(N2,2) for the interpolation between the two bounding curves.

If DISTCUR is equal to "ARC", the relative distribution factors in

DISTRIB(N2,2) are set equal to the relative arc length distribution of

the points on the axis curve, this arc length distribution having been

142

placed in the array ARCLEN(N2) by ITEM-"AXIS". The relative distribu-

tion is obtained simply by dividing the arc length at each point on the

axis by the total axis arc length.

If however, DISTCUR is not equal to "CURVE" or "ARC", subroutine

RELDIST is called to set these relative distribution factors in the

array DISTRIB(N2,2) for the curve interpolation.

The surface is then generated in the array CORD(3,N1,N2) by calling

STACK; the counter NCUR for the boundary curves is reset to 0; and the

surface is stored, printed, and/or plotted by calling PUT.

30. ITEM=" BLEND" (Section I-D6)

This operation generates an NIxN2 surface by N2 interpolations

between two Ni-point space curves. The number of points, Ni, on these

two curves is obtained from NBNPTS, and the number of interpolated

curves, N2, is given by CURVES. The two bounding curves between which

the interpolation is done will have been placed in the array CURV

(3,N1,2) by previous invocations of ITEM-"BOUNCUR". The relative dis-

tribution factors for the interpolation between these two curves is

determined either by DISTCUR and the array SPACCUR(2), or from a speci-

fied distribution function.

If DISTCUR is equal to "CURVE", subroutine GET is called to place

an existing NI-point characteristic size distribution function in the

array SCALE(2,NI). In this case, FACDIST is then called to interpolate

for the values of the normalized size distribution function (in SCALE)

at the integers from 1 to N2 (placed in the array ARCLEN(N2)), placing

the relative distribution factors in the array DISTRIB(N2,2) for the

143

interpolation between the two bounding curves. If, however, DISTCUR is

not equal to "CURVE", subroutine RELDIST is called to set these relative

distribution factors in the array DISTRIB(N2,2) for the curve interpola-

tion.

This operation can function either in space or on a previously

constructed and splined curved surface. The latter mode is activated by

the value "CURVED" being given for SURFACE (Section I-B8). In this case

the surface spline is obtained from file 8 (Section II-C4O, and the two

end points on the two bounding curves are reset to the closest points on

the spline by calling CORPAR with CURV(3,N1,1) and CURV(,Nl,2). This

replaces the t~.ree Cartesian coordinates in CURV with two surface

parametric(spline) coordinates.

The surface is then generated in the array CORD(3,NI,N2) by calling

BLEND. If the operation is on a curved surface, the result produced by

BLEND is two surface parametric(spline) coordinates for each point on

the surface. Therefore in this case PARCOR is called to convert these

to Cartesian coordinates of corresponding points on the spline. Fi-

nally, the counter NCUR for the bounding curves is reset to 0, and the

surface is stored, pr -ted and/or plotted by calling PUT.

31. ITEM-"TRANSUR" (Section I-D7)

This operation generates an N1xN2 surface by transfinite interpola-

tion from four curves forming the edges of the surface. The four edge

curves will have been placed in the array CURV(3, ,4) by four previous

invocations of the operation ITEM-"EDGECUR". Here the second subscript

144

is NI or N2, depending on the edge, and these dimensions are obtained

from NCORPT(1,3) and NCORPT(I,1) as set by the fourth "EDGECUR" usage.

This operation can function either in space or on a previously

constructed and splined curved surface. The latter mode is activated by

the value "CURVED" being given for SURFACE (Section I-B8). In this case

the surface spline is obtained from file 8 (Section II-C4), and the

points on the four edge curves are reset to the closest pints on the

spline by calling CORPAR once for each edge curve. This replaces the

three Cartesian coordinates in CURV with two surface parametric(spline)

coordinates.

Next, TRANSUR is called to generate the surface in the array

CORD(3,N1 ,N2). If the operation is on a curved surface, the result

produced by TRANSUR is two surface parametric(spline) coordinates for

each point on the surface. Therefore in this case PARCOR is called to

convert these to Cartesian coordinates of corresponding points on the

spline. The counter NCUR for the edge curves is reset to 0, and the

surface is stored, printed and/or plotted by calling PUT.

32. ITEM="TENSUR" (Section I-D8)

This operation generates an N1xN2 surface by bi-cubic interpolation

from the four corners in terms of set values for the corner points and

two tangent vectors thereon. The four corner points and tangents will

have been placed in the arrays CORD(3,_,_), TANGEN1(3,_,_) and TAN-

GEN2(3, ,_) by four previous invocations of the operation ITEM=

145

"SETCOR". Here the last two subscripts in the arrays are (1,1), (NI,

1),(,N2), and (Nl,N2), these dimensions being obtained from NCORPT(l,I)

and NCORPT(3,3) as set by the fourth use of "SETCOR".

This operation can function either in space or on a previously

constructed and splined curved surface. The latter mode Is activated by

the value "CURVED" being given for SURFACE (Section I-B8). In this case

the surface spline is obtained from file 8 (Section II-C4), and the

points and tangents on the four corners are reset to the closest points

on the spline by calling CORPAR once for each corner. The three compo-

nents of the tangents are replaced by the derivatives of the two spline

coordinates in the two directions on the surface.

Next, TENSUR is called to generate the surface in the array

CORD(3,NI,N2). If the operation is on a curved surface, the result

produced by TENSUR is two surface parametric(spline) coordinates for

each point on the surface. Therefore in this case PARCOR is called to

convert these to Cartesian coordinates of corresponding points on the

spline. The counter NCUR for the corners is then reset to zero, and the

surface is stored, printed and/or plotted by calling PUT.

33. ITEM="PARCOR" (Section I-D9)

This operation generates the Cartesian coordinates for points on an

NlxN2 surface(curve) from the surface parametric(spline) coordinates of

the points. The spline is obtained from file 8 (Section II-C4), and the

surface parametric coordinates are placed in the array CORD(2,NI,N2) by

146

calling GET. Then PARCOR is called to convert these coordinates to the

Cartesian coordinates of the points, and PUT is called to store and

print/or plot the surface.

34. ITEM-"PATCH" (Section I-D3)

This operation generates an N1xN2 surface by connecting correspond-

ing points on two tab curves with cubic curves. The number of points,

Ni, on the two tab curves is obtained from NTBPTS, and the number of

points, N2, on the connecting cubic curves is given as POINTS. The two

tab curves will have been placed in the array CURV(3,N2,2) by previous

invocations of ITEM="GENTAB", "EDGETAB", "CURTAB", or "SETTAB". Also, a

slope vector at each point on these tab curves will have been placed in

the array TABVEC(3,N2,2).

This operation can function either in space or on a previously

constructed and splined curved surface. The latter mode is activated by

the value "CURVED" being given for SURFACE (Section I-B8). In this case

the surface spline is obtained from file 8 (Section II-C4), and the

point3 on the two patch curves are reset to the closest points on the

spline by calling CORPAR with CURV(3,N1,1) and CURV(3,N1,2). This

replaces the three Cartesian coordinates in CURV with two surface para-

metric(spline) coordinates. The surface is generated in the array CORD

(3,Nl,N2) by calling PATCH. Since PATCH functions with NI and N2

reversed, SWITCH is called to reverse the dimensions of the surface

obtiined therefrom. If the operation is on a curved surface, the result

produced by PATCH is two surface parametric(spline) coordinates for

each point on the surface. Therefore in this case PARCOR is called to

147

convert these to Cartesian coordinates of corresponding points on the

spline. The counter NCUR for the tab curves is reset to 0, and the

surface is stored, printed and/or plotted by calling PUT.

35. ITEM="LINE" (Section I-C4)

This operation generates an N-point straight line between two

points in space. The number of points on the line is given as POINTS,

and the end points are given as the arrays R1(3) and R2(3). If either

of these is omitted from the input, the corresponding values are ob-

tained from previously set values (Section I-B7) in the arrays REND1(3)

and REND2(3). The point distribution on the line is determined by

DISTYP and the array SPACE(2). If RELATIV is equal to "NO", the values

given in SPACE are taken to be arc lengths and are converted to relative

values by division by the length of the line. Subroutine RELDIST is

then called to set the relative distribution factors in the array

DISTRIB(N,1).

This operation can function either in space or on a previously

constructed and splined curved surface. The latter mode is activated by

the value "CURVED" being given for SURFACE (Section I-B8). In this case

the surface spline is obtained from file 8 (Section II-C4), and the two

end points are reset to the closest points on the spline by calling

CORPAR with RI and R2. This replaces the three Cartesian coordinates in

RI and R2 with two surface parametric(spline) coordinates. The line is

generated in the array CORD(3,N,1) by calling LINE. If the operation is

on a curved surface, the result produced by LINE is two surface para-

metric(spline) coordinates for each point on the surface. Therefore in

148

this case PARCOR is called to convert these to Cartesian coordinates of

corresponding points on the spline. The line is then stored, printed,

and/or plotted by a call to PUT.

36. ITEM-"CURRENT" (Section I-E16)

This operation places an N1xN2 point surface(curve) into the array

CORD(3,NI,N2) by calling GET. Subroutine PUT is called to store, print,

and/or plot the surface.

37. ITEM="SWITCH" (Section I-E18)

This operation reverses the order of the points and/or switches the

two indices for an N1xN2 surface(curve). The actions intended are

specified by one, two, or three entries in the array REORDER(3). Sub-

routine GET is called to place the surface in the array CORD(3,N1,N2),

after which SWITCH is called to accomplish the actions. The revised

surface in the array CORD(3,NI,N2) is stored, printed, and/or plotted by

a call to PUT.

38. ITEM="OUTPUT" (Section I-E17,B-5)

This operation stores, prints, and/or plots an N1xN2 point sur-

face(curve). Subroutine GET is called to place the surface in the array

CORD(3,NI,N2), and PUT is called to store, print, and/or plot the sur-

face.

149

39. ITEM="INSERT" (Section I-E19)

This operation inserts an NI1xNI2 point surface(curve) into an

NlxN2 point surface(curve). The position on the second surface at which

the insertion is made is specified by the two entries in the array

START (2).

The operation calls GET to place the first surface into the array

CORDI(3,NI1,NI2). (The second surface will already be in current posi-

tion, i.e., in the array CORD(3,N1,N2)). The insertion is then made by

calling INSERT, the composite surface being returned in the array CORD

(3,N1,N2) where NI and N2 will have been increased if necessary to

accomodate the insertion. The composite surface is stored, printed,

and/or plotted by calling PUT.

40. TTEM-" EXTRACT" (Section I-E20)

This operation extracts an NixN2 point surface(curve) from an

NI1xNI2 point surface(curve). The dimensions of the former are given as

the two entries in the array POINTS(2). The position on the surface

from which the extraction is made is specified by the two entries in the

array START(2).

The operation calls GET to place the second surface into the array

CORDI(3,NI1,N12), and then calls EXTRACT to make the extraction into

the array CORD(3,N1,N2). If Ni is equal to unity, SWITCH is called with

REORDER(1) "SWITCH' to switch the indices so that the second, instead

of the first, is unity. Subroutine PUT is called to store, print,

and/or plot the extracted surface.

150

41. ITEM-"COMBINE" (Section I-E21)

This operation combines several files and/or cores onto a single

filc or core. The file and/or core numbers to be combined are given on

the input in the arrays FILEIN() and COREIN(_). The output file or

core is given in FILOUT or COROUT.

If the combination is to be put on a file, each input file or core

is written directly onto the output file. If the combination is to be

to a core storage, each input file or core is first written onto file

9, and this file is then transferred to the output core. This is accom-

plished by setting FILOUT to -1 and COROUT to 0, having first preserved

the input value of COROUT and any input values in OUT for printing

and/or plotting. Since an output file here is not to be rewound after

each file or core is added, REWOUT is set to "NO". The point counter NN

is set to O. ELch file, and then each core, in succession is placed in

the array CORD(3,NI,N2) by a call to GET, the point counter NN is

incremented by N1*N2, PUT is called to add the file or core to the

output file or file 9, and a printed notation of the addition is made.

For output to a file, the format is controlled by TRIAD and FORM

(Section I-B2). If CONTENT-"YES", a table of contents is written at the

beginning of the file, containing the COREIN number and the dimensions

N1,N2 of each surface(curve) on the file. The format of this table of

contents is also controlled by FORM, with COREIN,N1,N2 on a single line.

If the output is to core storage, the value of the output core

number, COROUT, and the printing and/or plotting indicators in OUT are

restored and file 9 is rewound. The combined input files and/or cores

are then placed in CORD(3,NN,l) by a call to GET with FILIN=-1 to read

151

from file 9, after which PUT is called with FILOUT set to 0 to place

the combined files and/or cores into a single core storage. Finally,

FILES(1,FILOUT), and/or CORES(1,COROUT), is set to the total number of

points on all the files, and/or cores, and FILES(2,FILOUT) and/or

CORES(2,COROUT) is set to unity.

42. ITEM="COPY" (Section I-E22)

This operation copies one or more files and/or cores onto other

files and/or cores. The files and/or cores to be copied are given on

input in the arrays FILEIN(_) and COREOUT(_), while those for the copies

are given in the arrays FILEGUT(_) and COREOUT(_). Each file, and then

each core, in succession is placed in the array CORD(3,Nl,N2) by calling

GET and then is copied to the next output file or core in succession by

a call to PUT. A printed notation of the copying is made.

43. ITEM-"POINT" (Section I-E25)

This operation sets the three Cartesian coordinates of a numbered

point. The point number is given by POINT, and the coordinates are

given either explicitly as R(3) or must have been set by a previous

invocation of the operation ITEM-"GETEND" (Section II-C11). In the lat-

ter case the coordinates are transferred from REND 1. In either case the

coordinates are placed in the array RPOINT(3, point number).

152

44. ITEM="CORPAR" (Section I-E26)

This operation determines the values of the surface parame-

tric(spline) coordinates for the points on an N1xN2 surface(curve) gen-

erated on a curved surface. The spline is obtained from file 8 (Section

II-C4), and the Cartesian coordinates of the surface(curve) are placed

in the array CORD(3,NI,N2) by calling GET. Then CORPAR is called to

convert these coordinates to the parametric coordinates of the points,

and PUT is called to store and print/or plot the parametric values.

45. ITEM="SETVAL" (Section I-E23)

This operation stores a real value for later use. The value can be

given directly, or can be calculated as a sum, difference, or product of

other values as indicated by MATH. fhe terms in the calculation are in

thn array TERMS, and the value is stored in the array RVALUE(VALOUT).

Negative entries in TERMS indicate previously stored values, with the

magnitude giving the location in RVALUE.

46. ITEM="SETNUM" (Section I-Cl of Vol. III)

This operation stores an integer value for later, use. The value

can be given directly, or can be calculated as a sum, difference, or

product, or as variations of these as discussed in the indicated section

of Vol. III. The type of calculation is indicated by MATH, and the

term3 of the calculation are in ITERMS. The value is stored in

IVALUE(VALOUT). Negative entries in ITERMS indicate previously stored

values, with the magnitude giving the location in IVALUE.

153

47. ITEM="SURDIST" (Section I-E27)

This operation distributes N1xN2 points on an existing surface

having NI1xNI2 points, where N1,N2 are given as POINTS and NI1,NI2 are

given as POINTS1. The point distribution is determined by the arrays

DISTYP(2) and SPACE(2,2).

The operaticn extracts each of the four edges from the surface in

succession and uses the "CURDIST" operation to distribute points on the

edges. The surface is then splined and CORPAR is called on each edge to

convert to parametric coordinates. TRANSUR is then called to create a

lattice of parametric coordinates, and finally PARCOR is called to

convert the lattice back to Cartesian coordinates on the surface.

Finally, PUT is called to store, print, and/or plot the surfice.

154

SUBROUTINES LIST

SUBROUT INE Page

-ACOSG 159
AITKEN. 159
ARCLNG. 160
BLEND 190
CONICUR 168
CONISUR 173
CORPAR. 218
COSG. 159
CURDIST 157
CURSPL. 226
CURTAB. 209
CURVEC. 160
DET3. 172
DET14. 172
EDGETAB 194
EXTRACT 207
FACDIST 211
PLATSUR. 172
GENTAB. 164
GET 202

From core. 203
From file. 203
Frcm namelist. 205
From the current array 205

INSERT. 206
TNTERPi , INTERP2, and INTERP3... *......... 197
MNiSEC. 178
LINE. 197r
PARCOR. 224
PUT 198

Core Storage 198
File Storage 200
Print. 201
Plot 201

PATCH 191
RELDIST 157
ROTATE. 181
SCAL. 167
13CURVE. 208
SING. 159
SPARC 213
SPLINE....... 212
S'PLNSUR 225
STACK 186

155

SURSPL .* 225
SURVEC. 162
SWITCH. 205
TANG. 159
TANPAR. 222
TENSURo................................216
TRANS 167
TRANSUR 21'4

156

D. SUBROUTINES

1. CURDIST

This subroutine distributes points on a given curve at a specified

distribution of relative arc lengths using linear interpolation. The

given curve, with NI points, and the arc length distribution on this

curve are in the arrays RI(3,NI) and AI(NI), respectively. The relative

arc length distribution (monotonic variation from 0 to 1) for the N

p)ints on the output curve is received in the array AO(N). The routine

first multiplies AO by the total arc length on the given curve, and then

places N points on that curve by linear interpolation for each value in

AD among those in AI.

The input point distribution is splined in terms of chord-length,

with the spline type specified by TYPE. (The default is a quadratic

spline.) The designated number of points then are distributed on the

spline curve according to the relative chord-length distribution set by

subroutine RELDIST.

2. RELDIST

This subroutine sets a relative distribution of N (an integer argu-

ment) values, monotonic on the range 0-1. The distribution may be

linear or with specified intervals on one or both ends, or at an inte-

rior point, ancording to a hyperbolic tangent or hyperbolic sine func-

tion (Appendix A). These hyperbolic functions produce a distribution

which reduces the truncation error that arises from the rate-of-change

of the point spacing (Ref. 4-5).

157

The type of distribution is received as the alphanumeric argLment

DISTYP:

"LINEAR": linear distribution (no specified intervals).

"BOTH": specified intervals at both ends using the hyperbolic
tangent distribution.

"TANH": specified interval at the first end using the hyperbolic
tangent distribution. (This gives the smoothest distribu-
tion over the entire range.)

"SINH": specified interval at the first end using the hyperbolic

sine distribution. (This gives the most uniform distribu-
tion near the specified spacing.)

"INTERIOR": specified interval at an interior point using the hyper

bolic sine. Here both the distribution fraction and the
point number at which this interval is to occur are speci-

fied also.

The specified intervals at point 1 and point N (if applicable) are

received in the real argument SPACE as SPACE(1) and SPACE(2), respec-

tively. The specified interval at an interior point (if applicable) is

received in SPACE(1), with the distribution fraction being received in

SPACE(2). The distribution is returned in the real argument array

FRAC(N) in all cases.

The linear distribution is given by

FRAC(i) = 1 1 1 - 1,2,--,N

and the hyperbolic function distributions are generated from the equa-

tions given in Appendix A. The code notation follows closely that of

this appendix.

158

3. SING, COSG, TANG, ACOSG

These functions return the hyperbolic sine, cosine, tangent, and

inverse cosine if FLAG (transferred through COMMON/HYPER/) is less than

unity for the first three, and if the mgnitude of the argument is

greater than unity for the last. Otherwise the circular functions are

returned. The angle is received as the real argument ANG in radians for

the first three and as the real value A for the last.

4. AITKEN

This subroutine receives the current and preceding values of an

iterate and the residual in the solution of a nonlinear equation an

returns a new iterate for Newton-Raphson iteration. The current iterate

arid residual are received as the real arguments X and F, with the pre-

ceeding values in the real arguments XO and FO. The new iterate, re-

turned in X, is calculated from

X - X - AC (X - X) F

where a parameter (range 0-1) is received as the real argument AC. (At

the first call, X is simply returned as 1.01X.) The quotient in paren-

theses is bounded by unity and is also set to unity when the residual

falls below a set minimum (FMIN=10-8). Each iterate will be printed if

the integer argument IPRT is nonzero.

159

5. ARCLNGT

This subroutine receives a space curve of N (integer argument)

points in the real argument array R(3,N), and returns the arc length at

each point in the real argument array ARC(N). This arc length is calcu-

lated as the chord length:

ARC(i) = ARC(i-1) + 1(i) - r(i-1)I i = 2,3,--,N

with ARC(1) = 0.

6. CURVEC

This subroutine receives an N-point (integer argument) space curve

in the real argument array R(3,N), and returns the unit tangent, unit

principal normal, curvature, and arc length at each point in the real

argument arrays TNG(3,N), NOR(3,N), CUR(N), and ARC(N). (If the alpha-

numeric argument LUNIT is equal to "NO", the tangent is not a unit

tangent, but will reflect the spacing on the curve).

The arc length, s, is calculated as the chord length:

s(1) = s(i-1) + JW) - r(i-1)I i - 2,3,--,N

with s(1) = 0.

The unit tangent, 1, is given by the derivative of C with respect

to arc length:

dr

which is represented at the interior points using second-order central

differences:

160

r(i+l) - r(i-1)
T(1 = ~ i+) -s~i 1) 1 - 2,3,-, I

and at the ends using first-order one-sided differences:

r(2) - r(l)
T(1) = s(2) - s(1)

r(2) - r(l)
T(1) = s(2) - s(1)

The principal normal, N, is given by the derivative of t;,e tangent

with respect to arc length:

dT

N=- ds

which is represented in difference form analogously to that given above

for the tangent. The curvature, K, is calculated as the magnitude of

the principal normal:

The principal normal is then made a unit normal by division by this

',urvture.

At points where the curvature is less than 10- 8 , the unit principal

normal is taken as directed toward a set point off the curve. This

point is received in the real argument array P(3) if the curve is a

straight line; otherwise it is located by adding N to r at the last

point having curvature greater than 108. If the first point has curva-

ture less than 108, the normal there is set to that at the second point.

This is done as follows: With a point off the line set in the

arrav P(3), the two vectors P1(3) and P2(3) are formed as

161

P1- R_1 - P

P2 = Ri - P

Pi

The normal then is taken as

N - AR x (P2 x P1)

- (P2 - P1) x (P2 x P1)

-[(P1 P2) - JP212]p1 + [(P1 P2 - 1 2]p2

If the straight line follows a curved portion, the point P is taken

as Ri i + Nii. Otherwise it is received in the array P(3).

Finally, if LUNIT = "NO", the unit tangents are multiplied by the

arc length spacing.

7. SURVEC

This subroutine receives an N1xN2 (integer arguments) surface in

the real argument array R(3,Nl,N2) and returns the unit tangents to the

grid lines on the surface, and the unit normal to the surface, in the

real argument arrays TANI(3,Nl,N2), TAN2(3,N1,N2), and NOR(3,NI,N2).

162

(If the alphanumeric argument LUNIT is set to "NO", the tangents will

not be normalized to unity, but will reflect the spacing on the sur-

face).

The tangents are given by the increment in C along the respective

curvilinear coordinate lines:

1 . al- T2 _ A2

These are calculated by central differences at interior points:

r(i+1,J) - r(i-1,J) i= 2,3,--,NI-l

(i,j) = 2 j= 1,2,--,N2

2(ij) (IJ+) - i = 2,3,--,N1
S)2 j = 2,3,--,N2-1

Here i and j refer to the second and third indices, respectively, in the

array R(3,Nl,N2). The edge values are calculated by one-sided differ-

ences:

T (1,J) - r(2,j) - r(1,j)

J=1 ,2,--,N2

(N1,j) = r(N1,j) - r(N1-1,j)

and

T2 (1,1) = (1,2) - r(i,1I

i-i ,2,--,NI

T2 (i,N2) = r(i,N2) - r(i,N2-1)

163

Zero values of 1I on j-1 and j-N2 are replaced by values on J-2 and

j-N2-1, respectively. (This situation can occur when one edge of the

surface degenerates to a point in physical space, e.g., a polar axis.)

An analogous procedure applies for 12 on i-i and Ni.

If LUNIT is not equal to "NO", these tangents are then converted to

unit tangents by division by the magnitudes. The unit normal, K, to the

surface is calculated from

TI x T2

N=- Ill x T21

8. GENTAB

This subroutine receives an NlxN2 surface in the array RI(3,N1,N2),

and returns an N-point portion of one of the curves on the surface in

the real argument array R(3,N), and a set of slope vectors in the real

argument array T(3,N), to be used to join another surface intersecting

the given surface on the curve R with slope T. The surface dimensions,

Ni and N2, are equivalenced with POINTS, and RI is equivalenced with

CORDI, which are received through COMMON/PAR/ and COMMON/RAY/, respec-

tively.

The vectors in T may be tangents to the curves crossing the curve R

on the surface or normals to the surface, as specified by the following

values of TABTYP(received through COMMON/PAR/):

164

"TANPOS": positive tangent to crossing curve:

C 2T>

"TANNEG" : negative tangent:

"NORPOS": positive unit normal to the surface:

165

"NORNEG": negative unit normal:

The indices of the ends of the curve R on the surface are in 11(2)

and 12(2), equivalened with START and END, repectively, which are re-

ceived through COMMON/PAR/. Either the first or second values in 11 and

12 must be equal, of course.

First the tangents, TAV1 and TAN2, to the two sets of curves on thp

surface, and the normal, NOR, to the surface, are determined by calling

subroutine SURVEC for the surface in RI. These tangents are not unit

vectors but rather reflect the spacing on the surface. In the following

discussion, i and j will be used to represent the second and third

indices in RI, i.e., the two coordinates on the surface.

If the curve R on the surface is to be part of a curve on which j

is constant, then the number of points on this curve, N, is determined

from

N = 112() - 11(1)j + I

166

The points on the curve segment, R, are set from RI with j=11(2)=I2(2)

for I from I1(1) to 12(0). If the positive (negative) tangent is indi-

(*It.e'i, T is :et from (-) TAN2 in like manner, eln, for the positIve

(negative) normal, T is set from (-)NOR. An analogous procedure is

followed if the curve segment is on a curve of constant i.

This subroutine can also treat a plane curve, rather than a sur-

face, with the plane curve being received in RI(3,N1,1). In this case, a

surface is first created by setting values in RI(3,i,2) and RI(3,i,3)

equal to those in RI(3,,1) plus 1 and 2, respectively, with the other

components in RI on J=2 and 3 equal to those for j=1.

9. SCAL

This subroutine receives an N1xN2 surface in the array RI(3,N1,N2),

and a set of three scale factors (one for each Cartesian direction) in

the array SCALE(3), and outputs a scaled surface in the array

R(3,NI,N2). The scale factors are received through COMMON/RAY/. The

scaling is done by multiplying each component in RI by the corresponding

scale factor. The surface in RI and its dimensions, Ni and N2, are

received through equivalence with CORDI and POINTS in COMMON/RAY/ and

COMMON/PAR/, and the scaled surface in R is returned through equivalence

with CORD in COMMON/RAY/.

10. TRANS

This subroutine receives an N1xN2 surface in the array RI(3,N1,N2),

and outputs a scaled and transformed surface in the array R(3,N1,N2).

The surface in RI and its dimensions, Ni and N2, are received through

167

equivalence with CORDI and POINTS in COMMON/RAY! and COMMON/PAR/, and

the scaled surface in R is returned through equivalence with CORD in

COMMON/RAY/.

The transformation positions the origin of the axes relative to

which the input surface is defined at the location r 0 in the output

system, r0 being received in the array ORIGIN(3). The input axes system

i3 rotated according to either direction cosines or Euler angles, nine

values being received in the array PARAM(3,3) for the former and three

values is in PARAM(i,l), with i=1,2,3, for the latter. (The Euler

angles are recognized when all of the last six entries in PARAM are

zero.) The rotation matrix A(3,3) is first filled as appropriate with

the direction cosines, either directly from PARAM or from the relation3

in terms of the Euler angles. The transformation then is performed

according to

R = ORIGIN + A * (RI * SCALE)

so that scaling is done first, followed by rotation and then transla-

tion.

11 . CONICUR

This subroutine generates a conic section curve in the x-y plani

(with z=O). The type of curve is specified by the alphanumeric integer

TYPE as follows, with the real parameters shown in each case:

168

TYPE = "CIRCLE" - circle

TYPE ="CIRARC" circular arc

ly

- - - NGLE(2)

Ti x

1 LENGTH

TYPE ="ELLIPSE" -ellipse

169

TYPE ="ELLIARC" -elliptical arc

.. ~ ANGLE (2)

I- WIDTH ANGE(I

eccentri city: ECCENT

TYPE = "PARABOLA" - parabola

Y

ANGLE(2)

WIDTHS AGE)

LENGTH

TYP "YPRBLII hye70l

The closed curves are centered at the origin. The ellipse has its axes

on the x and y axes, and the axis of the parabola and hyperbola are on

the x-axis, with the vertex on the positive x-axis.

The conic section curve parameters are received through

COMMON/PAR/, either directly or through equivalence. The number of

points on the curve is specified by the integer N (equivalenced with

POINTS in COMMON/PAR/), and these points run from the position deter-

mined by ANGLE1 to that of ANGLE2, these being equivalenced with ANGLE

in COMMON/PAR/. These angles are measured counter-clockwise from the

positive x-axls as shown, and either angle may be the larger. If no

angles are given, the points on the two closed curves run counter-clock-

wise from the intersection on the positive x-axis, and the points on the

open curves run from the intersection on the negative y-axis to that on

the positive y-axis.

A relative angular distribution can be specified in the real array

ANGDIS(N), with monotonic values from 0 to 1, received through equiva-

lence with DISTRIB(i,I), for i=1,2,...,N, in COMMON/RAY/. The points

will be located at the angle given by

ANG = ANGLEI + ANGDIS(i) * (ANGLE2 - ANGLEI)

for I = 1,2,--,N. The angles will be equally spaced if ANGDIS is not

specified. The routine converts angles to radians. If no limiting

angles are specified, ANGi is set to 0 and ANG2 is set to 21 for the

closed curves, or to -ir/2 and 7r/2 for the open curves.

At each point, the radius is calculated as a function of the angle

from the equations given in Appendix B, an is placed in the real array

RAD(N). The points on the curve are then placed in the real array

171

R(3,N), with the Cartesian component index as the first subscript, for

return through equivalance with CORD in COMMON/RAY/. Thus, for

i=1,2 N,

R(1,i) = RAD(i) * COS(ANG)

R(2,i) - RAD(i) * SIN(ANG)

R(3,i) - 0

with ANG calculated for each i as noted above.

12. DET3

This function evaluates a 3x3 determinant from Kramer's rule.

13. DET4

This function evaluates a 4x4 determinant by expansion in co-fac-

tors, using DET3 to evaluate the 3x3 determinants.

1'4. FLATSUR

This subroutine generates a surface in the x-y plane (with z=O)

bounded by a conic-section curve. The curve is generated exactly as in

subroutine CONICUR, and the open curves are closed by straight liner

connecting the end points to the origin. The grid is formed by connect-

ing points on radial lines from the origin:

172

The number of points on the curve is specified by NANG, and that on

the radial lines by NRAD, these being equivalenced with POINTS in COM-

MON/PAR/. Relative distributions on both the curve and the radial lines

can be specified. These distributions are in the arrays ANGDIS(NANG)

and RADDIS(NRAD), received through equivalance with DISTRIB(i,I) and

DISTRIB(i,2) in COMMON/RAY/, with i-I,2...,NANG and J=1,2...,NRAD. The

points are placed on the radial lines by multiplication of the r(e)

from Appendix B by RADDIS(J) for J=1,2,--,NRAD. The surface points are

placed in the array R(3,NANG,NRAD) for return through equivalence with

CORD in COMMON/RAY!. The first index of the grid on the surface varies

on the curves, while the second varies on the radial lines:

ly

C1

ANGLE(2) C2

ANGLE(I)

15. CONISUR

This subroutine generates a conic-section surface. The type of

surface is specified by the alphanumeric integer TYPE as follows, with

the real conic-section parameters shown in each case:

173

TYPE ="SPHERE" - sphere

x
RADIUS

TYPE = "SPHSEG" - spherical segment

TYPE = "ELIPSOID"1 - ellipsoid

XRA D

YRAD

Y'SZRAD

17L4

TYPE = "ELLISEG" -ellipsoidal segment

LENGTH

ECCNT ecenriit inx175an

TYPE ~~~ = ELCNI litccn

The closed surfaces are centered on the origin. The ellipsoid has its

axes on the three coordinate axes, and the cone and paraboloid have the

axis on the z-axis, with the vertex on the positive z-axis. The conic

section surface parameters are received through COMMON/PAR/, either

directly or through equivalence.

The grid on the surface is formed by lines at constant 0 and i,

analogous to latitude and longitude, respectively, with the z-axis as

the polar axis:

X

';
z.

The number of latitude lines, i.e., values of 6, is specified by the

integer NLAT, and that of the longitude lines by NLON. The points on the

latitude lines run from the longitude angle specified by the real vari-

able LONI to longitude angle LON2. Similarly the points on the longitude

lines run from the latitude angle LATi to LAT2. In each case, either of

the two angles may be the larger. If no angles are specified, 6 runs

from 0 to ir, for the closed curves and from 0 tr T/2 for the open

curves, and * runs from 0 to 21r, placing the points accordingly. These

parameters are equivalanced with POINTS, LON, and LAT in COMMON/PAR/.

176

A relative angular distribution can be specified for each angle by

the real array LATDIS(NLAT) for latitude, i.e., 6, and by LONDIS(NLON)

for longitude, *. Each of these arrays contains monotonic values from 0

to 1, received through equivalence with DISTRIB(j,2) and DISTRIB(j,1),

in COMMON/RAY/, with j=1,2...,NLAT and i=1,2,...,NLON. Latitude lines

are located at values of 6 given by

6: LAP - LATi + LATDIS (j) * (LAT2 - LATI)

for j-1,2,--,NLAT. Similarly, longitude lines are located at * values

given by

0: LOP = LONI + LONDIS (1) * (LON2 - LONI)

for i-1,2,--,NLON. In each case, the angles will be equally spaced if

*no distribution is specified.

The routine first converts all angles to radians. If no limiting

latitude angles are specified, LATI is set to 0, and LAT2 is set to n

fcr the closed surfaces, or to w/2 for the open ones. Similarly, if no

longitude limits are given, LONI is set to 0,. and LON2 is set to 21r in

all cases.

The radius is calculated at each point as a function of the two

angles from the equations given in Appendix C, and is placed in the real

array RAD(NLON,NLAT). The points on the surface are then placed in the

real array R(3,NLON,NLAT) according to

1

R(1,i,j) - RAD(i,j) * SIN(LAP) * COS(LOP)

R(2,1,j) - RAD(i,j) * SIN(LAP) * SINCLOP)

R(3,i,J) - RAD(i,J) * COS(LAP)

177

for i-1,2,--,NLON and j-1,2,--,NLAT, for return through equivalance with

CORD in COMMON/RAY/. Here LP is calculated for each I, and LAP for

each J, as noted above. The first index of the grid on the surface

varies on latitude lines, while the second varies on the longitude

lines:

XA

C21

"C1

y

16. INTSEC

This subroutine generates a curve as the intersection of two sur-

faces.

intersected surface

lef 2intersecting surface

The Intersection cur-~ is composed of the intersection3 of one family of

curves, I.e., the curves in the second direction on the N1xN2 intersect-

ing surface with the NI1xNI2 intersected surface. The dimensions of the

two surfaces are received through equivalence with POINTS for the inter-

178

secting surface, and with POINTSI for the intersected surface, in COM-

MON/PAR/. The surface spline of the intersected surface is received in

SUR(3,NI1,NI2) in COMMON/SPLINE/, and the intersecting surface in

CORD(3,NI,N2) in COMMON/RAY/.

Each of the NI curves (say curve II) in the second direction on the

intersecting surface in succession is splined by copying the curve from

CORD(3,II,N2) to CUR(3,N2,0), and calling CURSPL to return the spline in

CUR(3,N2,0:1). This spline has constant-curvature ends. The intersec-

tion of this spline curve CUR with the surface spline SUR of the inter-

sected surface is then found by Newton iteration.

Here there are three variables in the iteration: the spline coordi-

nate XC on the curve and the two spline coordinates, X1 and X2, on the

surface. Since the splines are with respect to the curvilinear coordi-

nates, i.e., the integer point indices, the actual position on the

spline curve is 12+XC, where 12 is the integer point index (12=1,

2,--,N2) and XC varies on the range 0-1:

12 =N2

12
--- * 2+ (C
X C

12=1

Similarly on the surface, the point location is C1+X1 ,C2+X2 where

C1=1,2,--,NI1 and C2-1,2,--NI2 with X1 and X2 on the range 0-1:

179

ia

/x

11

The iteration consists of an inner and an outer iteration, where

the inner iteration is Newton iteration for XI,X2,XC on a given inter-

val, i.e., with C1,C2,I2 fixed. If the inner iteraton leaves this in-

terval, the outer iteration changes C1,C2,I2, i.e., proceeds to a

different interval.

At each outer iteration the surface spline coefficients for the

current C1,C2 are placed in Q(4,4,3) from SUR (Section II-C4), and the

curve spline coefficients for the current 12 are placed in QC(4,3) from

CUR. The Newton iteration for X1,X2,XC then proceeds on the current

interval (Appendix H) until either convergence or one of these three

variables leaves the interval, in which case the values of C1,C2,I2 for

indicated location are determined, and a new outer iteration occurs.

Upon convergence, the Cartesian coordinates of the intersection are

determined from the surface spline and are placed in CORD(3,I1,1).

This procedure is followed for each of the curves on the intersecting

surface for I1=1,2,--,N1. The intersection curve thus Is returned in

CORD(3,N,1) through COMMON/RAY/.

180

17. ROTATE

This subroutine generates a surface by rotating a space curve about

an axis.

Z y

The routine receives two space curves in the same axis system and having

the same number of points, N1, as input In the real arrays RII(3,N1) and

R12(3,N1). If the second curve is not given, it is made the same as the

first curve. These curves are received through equivalence with CURV in

OOMMON/RAY/, and Ni is received through equivalence with POINTS(1).

Also received are the three direction cosines of an axis of rota-

tion passing through the origin. The direction cosines of the rotation

axis are received in the array COSINES(k,3) for k-1,2,3, through equiva-

lence with PARAM in COMMON/PAR/. The principal normal to the rotation

axis is calculated as the maximum of ixA, ix, and txA, in magnitude,

normalized as a unit vector. The routine generates the direction co-

sines of the binormal to the rotation axis from the relation

B - A x P

181

where P,E, and Q are the unit vectors In the directions of the rotation

axis, its principal normal, and its binormal, respectively:

z

X B

The direction cosines of the binormal are placed in COSINES(k,2).

Two limiting rotation angles are also received, ANGLE1 and ANGLE2,

through equivalence with ANGLE in COMMON/PAR/, and the rotation will be

from the former to the latter, either of which may be the larger. These

angles are measured from the normal toward the binormal, i.e., clockwise

looking down the rotation axis:

P

ANGLE(l) A -

ANGLE(2)

182

If only one angle is given, the second is set to the first plus 21r,

i.e., for a full rotation. The number of rotation angles to be used is

received as N?, through equivalence with POINTS(2) in COMMON/PAR/, and a

relative angular distribution can be specified in the array ANGDIS(N2),

having monotonic values from 0 to 1. This distribution array is equiva-

lenced with DISTRIB(j, 1), for J-1,2,--,N2, in COMMON/RAY/. The rota--

tion angles are set according to

ANGLE1 + ANGDIS(J) * (ANGLE2 - ANGLEl)

for J=1,2,--,N2. If no distribution is given, the angles will be

equally spaced.

A set of N2 curves, one for each rotation angle, is generated as

follows. For each value of j from I to N2, a space curve is generated as

an interpolation between the two input curves, using a relative distri-

bution (monotonic values from 0 to 1) in the array CURDIS(N2), received

through equivalence with DISTRIB(J,2) in COMMON/RAY:

RC =RII + CURDIS(J) * (R12 -RI)

z
RI1

-RC

y

x

183

A linear distribution is used if none is given. This interpolated

curve, RC, is then rotated by the angle given above, to produce the

curve on the surface for this value of J.

The rotation is accomplished as follows at each point on the inter-

polated curve. The components of the vector to the point in the system

formed by the unit vectors A, P, and B are calculated and placed in the

array RR(3) according to the relations

[RC *

RR RC B

L LI - -IJ[RC *A]

where the array RC(3) contains the components of the point vector in the

i,j,k system. The vector to the point can thus be expressed as

RR(1)P + RR(2)B + RR(3)A

The P, B, A system then is rotated about A through the angle ANG to form

a new system P', B', A' according to

1 1.P P' - B PI - A P

B B P B, - BA

At A', P At -B A' A A

or

P, cosANG -sinANG 0 p

B' =sinANG cosANG 0

0 1 A

The components of the rotated point vector in the P, B, A system then

are given by

184

RC(0) cosANG -sinANG 0 RR(I)]

RC(2) = s inANG cosANG 0 RR(2)

[C(3) 0 0 1 RR(3)J

The rotated point vector expressed in the P, B, A system then is

RC(1)P + RC(2)B + RC(3)A

and the components in the i,j,k system are thus given by

RC(1)(P - i) +RC(2)(B * i) + RC(3)(A * I)1

R RC(1)(P - j) + RC(2)(B * j) + RC(3)(A - j)

L RC(1)(P k) + RC(2)(B * k) + RC(3)(A - k)

in the array R(3, i,J) for i-1,2,--,N1 for return through equivalence

with CORD in COMMON/RAY/. The first index of' the grid on the resulting

surface varies along the curves, while the second varies around the

rotation axis:

AXIS

C2

185

13. STACK

This subroutine generates a surface by stacking space curves along

a space curve axis:

z

The routine receives two space curves in the same axes system and having

the same number of points, Ni, in the real arrays RIl(3,NI) and

R12(3,Nl). These two curves are received through equivalence with CURV

in COMMON/RAY/, and NI is equivalenced with POINTS(1) in COMMON/PAR/.

If the second curve is not given, it is made the same as the first

curve. The space curve axis, with N2 points, is received in the array

RO(3,N2). The unit tangent and principal normal at each point on this

axis are generated elsewhere and are received here In the real arrays

TNG(3,N2) and NOR(3,N2), respectively. The axis, and its tangent and

normal, are received through equivalence with AXIS, TANGENt, and NORMAL

in COMMON/RAY/, and N2 through equivalence with POINTS(2) In

COMMON/PAR/.

186

Also received are the three direction cosines of the axis, and the

direction cosines of the principal normal to this axis, in the system in

which the curves are defined. The direction cosines of the axis are

received in the array COSINES(k,3) for k-i,2,3, and those of the princi-

pal normal are in COSINES(k,I). These arrive through equivalence with

PARAM in COMMON/PAR/. The routine generates the direction cosines of

the binormal to the axis in the curve system from the relation

B-A xP

where , , and a are the unit tangent, principal normal, and binormal,

respectively, to the axis:

z

_p A _

The direction cosines of the binormal are placed in COSINES(k,2).

A set of N2 curves, one for each point on the axis is generated as

follows. At each point on the axis, i.e., for j-1,2,--,N2, the local

binormal to the axis is calculated and placed in the array BIN(3) ac-

cording to

BIN - TNG x NOR

187

A space curve is generated as an interpolation between the two input

curves, using a relative distribution (monotonic values from 0 to 1) in

the array CURDIS(N2), equlvalenced with DISTRIB(J, 2) in COMMON/RAY/ for

j=1 ,2,--,N2:

RC = RII + CURDIS(J) * (R12 - RI1) (cf. Section HI-D17)

A linear distribution is used if none is given. At each point on the

interpolated curve the components in the system formed by the unit

vectors A, P, and B are calculated and placed in the array RR(3) accord-

ing to the relationa

RC - P

RR RC.B(RC * A/

where the array RC(3) contains the components of the point vector In the

i,j,k system. The vector to the point can then be expressed as

RR(1)P + RR(2)B + RR(3)A

The P, B, A system is then moved to have its origin at the point RO(j)

on the axis, with A aligned with the local tangent to the axis, P

aligned with the local principal normal, and B aligned with the local

binormal:

188

SA

A XIS

The components of the moved point vector in the i,j,k system are

thus given by

R = RO + RR (I)NOR + RR(2)BIN + RR(3)TNG

The points on the moved curve are placed in the array R(3,i,j) for

i=1,2,--,Nl for return through equivalence with CORD in COMMON/RAY/.

The first index of the grid on the resulting surface varies along the

curves, while the second varies down the axis:

9AXIS

" C1 /C2

189

19. BLEND

This subroutine generates a surface by interpolation between two

space curves.

z

y

It receives two space curves in the same axes system having the

same number of points, Ni, in the real arrays RI1(3,Nl) and R12(3,Nl).

These curves are receilred through equivalence with CURV in COMMON/RAY/,

and Ni through equivalence with POINTS(1) in COMMON/PAR/.

A set of N2 space curves is generated by interpolation between

these two input curves using a relative distribution (monotonic values

from 0 to 1) in the array CURDIS(N2), equivalenced with DISTRIB(j,2) in

COMMON/RAY/ for J=1,2,--,N2.

R = RII + CURDIS(J) * (RI2 - RI1)

190

for j-1,2,--,N2. A linear distribution is used ir none is specified.

The points on the interpolated curve are placed in the array R(3,l,j)

for i=1,2,--NI for return through equivalence with CORD in COMMON/RAY/

The first index of the grid on the resulting surface varies along the

curves, while the second varies from one interpolated curve to the next:

C2E

CI

20. PATCH

This subroutine generates a surface by connecting two space curves

by a set of cubic curves. The routine receives two space curves having

the same number of points, N2, in the arrays RII(3,N2) and R12(3,N2).

Also received are tab vectors (not necessarily unit vectors) for each

point on each curve, these being in the arrays T1(3,N2) and T2(3,N2).

The curves and tab vectors are received through equivalence with CURV

and TABVEC in COMMON/RAY/, and N2 is received through equivalence with

POINTS(2) in COMMON/PAR/.

191

A set of N2 cubic curves is generated connecting corresponding

points on the two input curves, and matching the tab vectors at each

point on the input curves. The number of points on each of these con-

necting curves is specified as Ni, equivalenced with POINTS(1), in

COMMON/PAR/:

R12

--T2
S / I / I

I I
/ 1 /I , I l I j

i \i

Ru1

If the spacing in SPACE(_,1), where the first subscript is 1 or 2

referring to the first or second tab curve, Is not zero then the corre-

sponding tab vectors are normalized to unity and then multiplied by that

spacing. (if TOTARC is not zero the spacing is taken to be relative and

the spacing is multiplied by TOTARC.) Zero spacing implies that the

spacing is to be the magnitude of the tab vector as received. For each

point on the input curves, i.e., for J=1,2,--N2, the routine first

calculates the vectors C , where & represents the normalized coordi-

naites (rangp. 0-1) varying along the connecting curves, from the two

sets of tab vectors, placing these derivatives in the arrays S1(3) and

S2(3) for the two curves:

192

Si = (Ni - 1) * Ti

S2 = (Ni - 1) * T2

The coefficients in the cubic polynomial are then calculated from the

relations given in Appendix D, and Ni points are generated on each

connecting curve using equally spaced increments in .

The point distribution on the connecting curve is then changed to a

hyperbolic function distribution (Section I-B6) while preserving the

present spacing at each end as follows. First the present spacing at

each end is calculated, and is converted to relative spacing by division

by the total arc length of the curve, the latter being obtained by a

call of subroutine ARCLNGT. Then subroutine RELDIST is called to

provide a hyperbolic function relative distribution having the spacing

as determined at each end. Subroutine CURDIST is then called to redis-

tribute the points on the connecting curve. If the opration is not on

curved surface, SPLNSUR is called to spline the connecting curve in RI

(Section II-CkO. Finally, CORPAR is called to convert the Cartesian

coordinates in R to spline coordinates of the closest points on the

spline, and PARCOR is then called to convert these spline coordinates

back to Cartesian coordinates of the final points on the connecting

curve. (This is done because the points from CURDIST are sec by linear

interpolation on chords between points on the cubic curve, and therefore

must be transferred onto the cubic curve via the spline.) The revised

point distribution on the ccinecting curve is placed in the array

R(3,i,J) for i-1,2,--,NI for return through equivalence with CORD in

COMMON/RAY/. TI- first index of the grid on the resulting surface varies

on the connecting curves, while the second varies on the input curves:

193

C1

C2

21. EDGETAB

This subroutine receives an N1xN2 surface in the array RI(3,NI,N2),

and returns one of the four edges of the surface in the array R(3,N),

together with a set of slope vectors in T(3,N), to be used to join

another surface to the given surface along the chosen edge with inter-

section slope determined by the vectors in T. These slope vectors are

not necessarily unit vectors but may reflect the spacing on the surface.

The number of points on the edge, N, will be either Ni or N2, of course.

The input surface is received through equivalence with CORDI in COM-

MON/RAY/, and its dimensions through equivalence with POINTS in COM-

MON/4 PAR/ .

The vectors in T may be tangents to the surface off its edge, or

may be normals to the surface, as specified by the following values of

TABTYP, received in COMMON/PAR/:

194

"TANGEN" - tangenit to the surfaco, directed off the edge

"NORPS" - ositie un Tnomltthsuac

"NORNEG" - nesative unit normal to the surface

The particular edge to be taken is identified by the value of EDGE,

received in COMMON/PAR/:

195

UPPER2

LOWER I

C2 UPPER1

C1
LOWER2

If the surface is actually only a curve in the x-y plane, two parallel

curves are added at unit separation in the z-direction to form a surface

so that no special procedures will be needed.

On the specified edge, the routine determines the tangents to the

two sets of curves on the surface using two-point central differences

between points on the edge and two-point one-sided differences off the

edge as illustrated below:

TAN1

TAN 1

These tangents are not unit vectors but rather reflect the spacing on

the surface. The normal is then determined from

196

NOR - TANI x TAN2

and is normalized to a unit vector. The appropriate tangent, or the

normal or its negative, are placed in the slope vector array T, and the

points on the edge are placed in the array R.

22. INTERPi, INTERP2, and INTERP3

These subroutines perform linear interpolation for one, two, or

three functions with NC components. All transfers here are through the

arguments. The routines receive arrays of NI function values in

F[(NC,NI) for INTERPI, in FI1(NC,NI) and F12(NC,NI) for INTERP2, and in

these and F13(NC,NI) for INTERP3. The several functions in the latter

two routines are not related. An array of NI arc length values, corre-

sponding to the function values, is received in the array AI(NI). Fi-

nally an array of NO values of arc length at which the function(s) is to

be evaluated by the interpolation is received in the array AO(NO).

The routines evaluate the function(s) at the arc lengths in AO by

linear interpolation among the function values in FI(or FI1, etc.)

corresponding to the arc lengths in AI. The interpolated function values

are placed in the array FO(NC,NO) for INTERPI and in FO1(NC,NO), etc.,

for the others.

23. LINE

This subroutine generates a straight line between two end points

specified by the arrays R1(3) and R2(3), received in COMMON/PAR/, with N

points on the line, N being equivalenced with POINTS in COMMON/PAR/. A

197

relative distribution, with monotonic variation from 0 to 1, can be

given in the array FRAC(N), equivalenced with DI b!IB(i,1) for

i=1,2,--,N in COMMON/RAY/. The points are generated according

Ri + FRAC(i) * (R2 - RI)

for i=1,2,--,N and are placed in the array R(3,N), for return through

equivalence with CORD in COMMON/RAY/.

24. PUT

This subroutine places a surface(curve) on file or core storage.

It also prints and/or plots a surface(curve). The N1xN2 surface(curve)

is received in the argument array F(3,Nl,N2), with N2-1 for curves. The

surface dimensions, NI and N2, are also received as arguments. An

optional label is received in the integer LABOUT in COMMON/JO/, which is

included in printed notations and on plots but is not stored.

Core Storage

Storage on core is called for by a positive value of the integer

COROUT in COMMON/IO/, the value indicating the storage number. Core

storage is in the large array STORE(3,DIMSS) in COMMON/IO/. The same

number cannot, of course, be used for two surfaces without overwriting

the one already on storage.

Both surfaces and curves are stored one-dimensionally in STORE as

sequences of points (three Cartesian coordinates for each point, with

the first surface dimension running faster). The maximum number of

points that can be put in STORE is DIMSS. If the present surface wili

not fit above those already in STORE, the array STORE is written on file

198

l0 and a new STORE array is opened. In this manner a number of succe5-

:3ive writes of STORE to file may occur, and no limit is imposed as Lo

the total number. Each successive STORE on the file is numbere" consecu-

tively from 1. The contents of a certain STORE are retrieved from the

file by reading through all preceding versions on the file. (It is thus

desirable to have DIMSS as large as possible.)

Once a version of STORE is written on file 10, no changes are ever

made in that version. The total number of versions on file 10 is kept

in MSTORE. A copy of a partially-filled version of STORE is kept on

file 7, and PSTORE=1 indicates its existence. The version of STORE on

file 10 which contains a certain stored surface, i, is recorded in

NSTOR(i), and the location of the first point on this surface in STORE

is recorded in LSTOR(i). (The maximum number of surfaces that can be

stored in this manner is DCOR.) The number of the version of STORE that

is currently in core is kept in NSTORE. File 10 is not rewound after

being written or read. If NSTORE is less than MSTORE then the routine

first reads file 10 from its present position until the last version of

STORE on the file is in core. If NSTORE is greater than MSTORE, i.e.,

if the version of STORE currently in core is the partially-filled

version, then the routine will attempt to add the present suface to this

version in core. Otherwise the version currently in core is not the

partially-filled version, and the partially-filled version is recovered

from file 7 after rewinding.

The starting position for the next storage in this last version of

STORE is kept in LSTORE. Therefore, if LSTORE+N1*N2-1 exceeds DIMSS,

the present surface to be stored will not fit in this version of STORE.

199

In that case a new version of STORE is opened by incrementing MSTORE

and setting LSTORE to I and PSTORE to 0. In any case NSTORE is set to

MSTORE+1 and the present surface is written in STORE starting at posi-

tion LSTORE, and the STORE version number is placed in NSTOR(COROUT) and

the starting point location in LSTOR(COROUT). Finally, LSTORE is incre-

mented by N1*N2.

Note that, although core storage numbers may be reused, the space

in STORE is not released. Therefore no economy is gained by reusing

storage numbers.

The routine stores the dimensions of the surface, NI and N2, in

CORES(1,COROUT) and CORES(2,COROUT), respectively, in COMMON/IO/. The

array F is written into the array STORE as described, and a notation of

the storage is printed.

File Storage

Storage on file is called for by a positive value of the integer

FILOUT in COMMON/IO/. The array F is written onto a disk file by a loop

with the first subscript running fastest, followed by the second and the

third. The format on file storage is controlled by TRIAD and FORM

(Section I-B2), received as LTRIAD and LFORM through COMMON/IO/. If

HEAD (received as LHEAD through COMMON/1O/) is "YES", a counter and the

surface dimensions N1,N2 are written as a triad, also in the format

indicated by FORM, before each surface on the file. The form is unfor-

matted if LFORM in COMMON/IO/ is eqal to "NFORM", E20.8 format if "E",

or 1i16%-directed if "LIST". The file is rewound before being written on

unless REWOUT="NO" in COMMON/IO/. The system file number is FILOUT+1O,

200

the 10 being added to avoid system files. This allows the file storage

locatlons specified by FILOUT to start with 1, but must be taken account

of in runstream statements that preserve these files, e.g., the file

created with FILOUT=1 must be preserved by a runstream statement refer-

ring to file 11.

A file storage number, FILOUT, must not be used again unless over-

writing is intended. No limit on the maximum number of files is imposed

by the code, but there will be some system limit, of course, and the

code cannot check for violations. The routine stores the dimensions of

the surface(curve), Ni and N2, in FILES(1,FILOUT) and FILES(2,FILOUT),

respectively, in COMMON/IO/, and prints a notation of the storage.

Print

If either entry of the integer array OUT(2) in COMMON/IO/ is equal

to "PRINT", the surface(curve) in the array F will be printed.

Plot

If either entry of the integer array OUT(2) is equal to "PLOT",

the surface(curve) in the array F will be plotted. If FRAME-"NEW" the

plot will be on a new frame; otherwise it is added to the previous frame

to form a composite plot. The routine numbers the frames in NPLOT, and

calls the system subroutine ENDPL, with NPLOT as the argument, if a new

frame is indicated.

The limits of the plot are received in the arrays RMIN(3) and

RMAX(3), and if none are given, and FRAME-"NEW", they are set to the

limits of the values in the array F, i.e., the entire surface(curve) is

201

plotted. These plot limits are printed. The viewpoint for the plot is

received in the array VIEW(3), the first two entries of which are the

viewing angles (Section I-B5) and the third is the distance. This dis-

tance is set to 1000 times the diagonal of the box formed by the cor-

ners defined by RMIN and RMAX if no third entry is given for VIEW. The

two view angles are defaulted in the main program to 900 . The physical

size of the plot on the screen is specified by the array SIZE(2), the

entries being the horizontal and vertical dimensions in inches. These

dimensions are defaulted in the main program to 8 inches. All of these

plot parameters are received in COMMON/IO/.

The plot is set up by calling the system subroutines TITL3D (to

include the label and to set the screen size), AXES3D (to draw axes),

VUANGL (to set the viewpoint), and GRAF3D (to set the plot limits). Each

family of grid lines on the surface is then plotted by placing the three

Cartesian coordinates of each point on each line in succession in the

three arrays XRAY, YRAY, ZRAY (the dimensions of which are NI or N2, as

the case may be) and calling the system subroutine CURV3D to draw the

line.

25. GET

This subroutine retrieves a surface or curve from file or core

storage, reads it from the namelist, or transfers it from the current

array CORD. The N1xN2 surface (or curve with N2=) is returned in the

argument array F(3,N1,N2,). An optional label is received in the

integer LABIN in COMMON/IO/, which is included in printed notation but

is not used for location identification.

202

From Core

Retrieval from core storage is called for by a positive value of

the integer CORIN in COMMON/IO/, this value being the same as used

previously for COROUT when the storage was done. The routine obtains the

dimensions of the surface, NI and N2, from CORES(1,CORIN) and CORES

(2,CORIN) in COMMON/IO/. The routine obtains the number of the STORE

version on file 10 containing the present surface from NSTOR(CORIN) and

retrieves this version from the file. If this version number is greater

than the number NSTORE of the version currently in core then file 10 is

read from its current position through the version needed. If the ver-

sion needed is the partially-filled version then this version is read

from file 7 after rewinding. If, however, the number of the version

needed is less than the number of the version currently in core, then if

the partially-filled version is in core it is written on file 7 after

rewinding and PSTORE is set to 1. Then file 10 is rewound and read

through the version needed.

The surface is then written from STORE, starting at location LSTOR

(CORIN), to the argument array F, and a notation of the retrieval is

printed.

From file

Retrieval from file storage is called for by a non-zero value of

the entry FILIN in COMMON/IO/. A positive value of FILIN indicates that

the retrieval is to be from a file established by subroutine PUT, with

FILIN having the same value as used previously for FILOUT when the

storage was done. A negative value of FILIN indicates that the sur-

203

face(curve) was written on file by the grid code. In either case the

file is rewound before being read unless RENIN="NO" in COMMON/[O/.

Recall that the actual disk file number is IFILINI + 10, i.e., FILIN=1

means disk file 11. This must be considered in runstream statements

that obtain the disk files.

If FILIN is positive, the routines obtain the dimensions of the

surface(curve), Ni and N2, from FILES(1,FILIN) and FILES(2,FILIN) in

COMMON/I0/ unless the former is zero in which case the argument values

are used. The array F is read from disk file number FILIN+10 in a loop

with the first subscript of F running fastest, followed by the second

and the third. The format on a file read is indicated by TRIAD and FORM

(Section I-B2), received as LTRIAD and LFORM through COMMON/IO/. The

form is unformatted if LFORM in COMMON/IO/, is equal to "UNFORM", E20.8

format if "E", or list-directed if "LIST".

If FILIN is negative, the routine reads from disk file number

IFILINI + 10, reading first the number of blocks into the integer BMAX,

and then the dimensions of each block into the integer array CMAX

(3,BMAX), using an implied loop with the first subscript running faster.

For each block, the values of F are read using an implied loop on the

first subscript in an outer loop with the second subscript running

faster. Subroutine PUT is then called to store the surface(curve) for

that block on file (or core) at successive locations starting with that

received in FILOUT (or COROUT). After all of the blocks have been

stored, COROUT and FILOUT are set to zero. A notation of the retrieval

is printed in either case.

204

From namelist

If the first entry of the array VALUES in COMMON/lO/ is not equal

to "NONE" (the default), then the routine reads N1xN2 points from this

array in the namelist into the argument array F(3,N1,N2). This reading

is done in a loop with the first subscript in F varying fastest, fol-

lowed by the second and third. The maximum number of points that can be

read for a surface is DIMV, and an error check is made. A notation of

the reading is printed.

From the current array

If both CORIN and FILIN are zero, and the first entry of the array

VALUES is "NONE" (the defaults for each), the argument array F(3,Nl,N2)

i:i simply copied from the current surface array CORD(3,NI,N2) in COM-

MON/RAY/ and a notation is printed. The dimensions here are obtained

from the values, NCI and NC2, stored for the current surface.

26. SWITCH

This subroutine switches the order of progression of the points in

either or both directions on a surface or curve, and/or switches the

grid point indices on a surface. The NlxN2 surface(curve) is received

in the array R(3,NI,N2), and the switching operation is indicated by the

integer array REORDER(3), equivalenced with START in COMMON/PAR/. The

surface array is received through equivalence with CORD in COMMON/RAY/,

and its dimensions are received through equivalence with POINTS in

COMMON/ PAR/.

205

If any entry of REORDER is equal to "REVERSEVI, then the progre3-

sion of the second index in R is reversed, i.e., the value in R supplied

for the second index equal to Ni will be returned in R for the second

index equal to 1, etc. A similar effect is produced with regard to the

third index if any entry of REORDER is equal to "REVERSE2". If any

entry is equal to "SWITCH" then the entries in R will be rearranged so

that the order of the second and third subscripts is switched, i.e., R

is Yeturned in the form R(3,N2,NI). Any of these operations can be

called for simultaneously, and reversal of progression is performed

before switching.

The routine accomplishes this by first copying the array R as

received to the array RI(3,N1,N2). Then RI(3,i,j) is copied back to

R(3,m,n) in a loop. In this loop, i varies from NI to 1 if "REVERSEI" is

found, or from 1 to Ni otherwise. Similarly, j varies from N2 to I if

"REVERSE2" is present, or from 1 to N2 otherwise. If "SWITCH" is found,

mrj and n-i, thus accomplishing the switch; otherwise m=i and n=j.

2. INSERT

This subroutine inserts the M1xM2 argument array RI(3,MI,M2) into

the N1xN2 argument array R(3,NI,N2), starting at the position specified

by the array START(2):

206

N1, N2

I I

I I
r ---- -JIM1 xM2

START(M), START(2)

This is done in a loop that copies RI(3,i,j) onto R(3,m,n) with

m=START(1)+i-l and n-START(2)+J-l for i=1,2,---, M1 and j=1,2,--, M2.

The surface dimensions, M1 and M2 are equivalenced with POINTSI in

COMMON/PAR/, and NI and N2 are equivalenced with POINTS.

?8. EXTRACT

This subroutine extracts an N1xN2 argument array R(3,NI,N2) from an

M1xM2 array RI(3,MI,M2), starting at the position specified by the array

START (2):

M1, M2

r -
I I
I I

I N1xN2 II !

START(1), START(2)

207

This is done in a loop that copies RI(3,ij) onto R(3,m,n) with

i=START(1)+m-I and ThSTART(2)+n-I for m=1,2,--,Nl and J-1,2,--,N2. The

surface dimensions, MI and M2, are equivalenced with POINTS in

CJMMON/PAR/, and NI and N2 are equivalenced with POINTS.

2 . SCURVE

This subroutine generates a cubic space curve between two points,

with specified slope vectors at each end. The end points are received

in the arrays RI(3) and R2(3) in COMMON /PAR/, and the unit tangents at

the ends are received in the arrays TI(3) and T2(3), equivalenced with

TABVEC in COMMON/RAY/. The number of points on the curve is specified

by N, which is equivalenced with POINTS in COMMON/PAR/.

The routine calculates the vectors r,, where represents the

normalized coordinate (range 0-i) varying along the curve, from the

vectors in Ti and T2, placing these derivatives in the arrays Si(3) and

S2(3):

S1 = (NI-i) * Ti

S2 = (NI-i) * T2

The unit tangents in Ti and T2 here are multiplied by the spacings in

SPACE(l,l) and SPACE(2,1). These spacings are multiplied by the total

arc length, TOTARC, if they are relative. The parameters of the cubic

polynomial are then evaluated from the equations in Appendix D. The

cubic curve is generated using a linear distribution of the coordinate

& that varies along the curve from 0 to 1 as the point index varies

from 1 to N. The line is placed in the array R(3,N) for return through

equivalence with CORD in COMMON/RAY/.

208

30. CURTAB

This subroutine receives a curve with N points in the array

RI(3,N), and returns a single point, specified by I, on the curve in the

argument array R(3), together with a slope vector at the point in the

argument array T(3), to be used to join another curve intersecting the

given curve at the point R with slope vector T. The curve is received

through equivalence with CORDI in COMMON/RAY/, and N and I through

equivalence with POINTS and START in COMMON/PAR/.

The vector T may be the tangent or unit principal normal to the

curve, as determined by the following values of the Integer TABTYP in

COMMON/PAR/:

"TANPOS": positive tangent

Cl

209

"TANNEGI": negative unit tangent

C,

"NORPOS": positive unit normal

"NORNEG"I: negative unit normal

C,

210

The closed surfaces are centered on the origin. The ellipsoid has its

axes on the three coordinate axes, and the cone and paraboloid have the

axis on the z-axes, with the vertex on the positive z-axes.

The routine first calls subroutine CURVEC to determine the tangent

and principal normal at each point on the curve. The point at I and the

appropriate slope vector there are then placed in R and T.

31. FACDIST

This subroutine receives a set of NI arc lengths in the array

SCALE(1,NI) and a corresponding set of NI distribution factors in the

array SCALE(2,N). Also received is a set of N arc lengths in the array

ARC(N). The routine converts the arc lengths in SCALE(1,NI) to the

range of those in ARC by multiplying those in SCALE by the ratio of the

last arc length in ARC to the difference between the first and last

values in SCALE, placing the result in the array AI(NI). Similarly, the

distribution factors In SCALE(2,NI) are converted to relative values on

the range 0-1 by division by the difference between the first and last

values in SCALE, placing the result in AO(NI).

A set of N distribution factors corresponding to the arc lengths

received in ARC is then generated from the factors in AO by linear

interpolation among the arc lengths in AI. These factors are placed in

the array FRAC(N).

211

32. SPLINE

This subroutine fits a cubic spline to a space curve of NSP points

from the NA points in the argument arrays XARAY(NA) and YARAY(NA)

defining a curve y(x). The spline span is located about the argument

XCALL in the range of values in the array XARAY, centered if possible.

The routine returns y, yx, and Yxx at the NSP spline points as the

arguments YR, DYDX, and D2YDX2.

The routine first checks that XCALL is in the range of values in

XARAY and that the number of spline points, NSP, does not exceed the

number of points, NA, in the function arrays. Error messages and termi-

nation follow if either of these conditions is not met.

The spline span is then positioned about XCALL in the independent

variable array XARAY, centered if possible or against one end of XARAY

otherwise:

NA * 9

XCALL

212

The NSP points in the span are then splined, using quadratic end

spans, through a tridiagonal solution (Appendix G). The function values,

and the first and second derivatives, are then calculated at each point

on the spline span.

33. SPARC

This routine receives an NPTS-point curve in the array R(3,NPTS)

and distributes NMAX points on the curve according to curvature in the

array W(3,NMAX). The curve is received through equivalence with CORDI

in COMMON/RAY/, and its number of points through equivalence with

POINTSI in COMMON/PAR/. The return of the curve is through equivalence

with CORD in COMMON/RAY/, the number of points having been received by

equivalence with POINTS in COMMON/PAR/.

The routine first calculates the arc length (actually chord length)

distribution on the input curve by

S(M = s(i-1) + ii"ii

for i=2,3,--,NPTS. Subroutine SPLINE is then called to spline the

curve, providing the first and second derivatives of R with respect to

arc length. The radius of curvature is then calculated at each point on

the curve from the relation (Appendix E)

l sl2

s -

The radius of curvature is limited by RHOMX, set to 1000.

213

Next the derivative of included angle with respect to arc length,

Xs, is computed at each point on the curve as the ratio of arc length

increment to radius of curvature:

s p

and a cummulative angle distribution is obtained by integrating these

increments along the curve:

ai - a ds

This angle distribution is then normalized by division by the total

accumulated angle.

The NMAX points are then placed in the array W(3,NMAX) on the curve

at equal increments of accumulated angle by interpolation on the

spline, and are returned through equivalence with CORD in COMMON/RAY/.

34. TRANSUR

This subroutine generates an N1xN2 point surface by transfinite

Interpolation (cf. Ref. 1 and 2) from four edge curves. The routine

receives the four edge curves in the array CURV as follows:

CURV (3, NI, 3)

f , -CURV(3,N2,2)

N1,N2

CURV(3,N2,1) CURV)CURV(3,NI,4)

214

The surface dimensions are received as N1,N2 through equivalence with

POINTS(2) in COMMON/PAR/.

The edge curves are first placed appropriately in the array

R(3,NI,N2), equivalenced with CORD in COMMON/RAY/. The points on the

surface then are generated in R by two-dimensional transfinite interpo-

lation according to

£ = P + P +2 - P1P2

where P1 and P2 are the one-dimensional interpolation projectors in the

two directions on the surface (cf. Appendix A of Vol. III). This is

implemented as

R(_,CI,C2) = (1 - Fl) * R(_,I,C2)

+ F1 * R(_,Nl,C2)

+ (1 - F2) * R(_,Cl,I)

+ F2 * R(_,C1,N2)

- (1 - Fl) * (1 - F2) * R(_,1,1)

- (1 Fl) * F2 * R(_,l,N2)

- F1 * (1 - F2) * R(_,Nl,1)

- F1 * F2 * R(_,Nl,N2)

2

215

35. TENSUR

This subroutine generates an N1xN2 point surface (Coon's patch, cf.

Ref. 3) by tensor-product interpolation from the four corners. The

routine receives the Cartesian coordinates of the four corner points,

and two slope vectors, at each at the appropriate positions in the

arrays R(3,NI,N2), Tl(3,Nl,N2), and T2(3,N1,N2), these being equiva-

lenced with CORD, TANGEN, and TANGEN2, respectively, in COMMON/RAY/.

The surface is generated by bi-cubic interpolation from the four

corners:

u,e =
(1,0)

(0,0)

Here the coordinates u,v vary as E I, 2 , but normalized to the range 0-1.

The interpolation is given by (cf. Ref. 5),

r(u,v) - B(u) S B T(v)

where

216

E(o,o) r(0,1) r V(00) rv (0,1)

C(0 ,o) r(1,1) r v(1,0) r v(1,1)

S(4,4,-)
ru(0,0) r u(0,1) 0 0

u(1,0) r u(1,1) 0 0

with the first subscript running down the columns, and the second across

the rows. (The last subscript indicates the component.) The parenthe-

ses refer to the corners as indicated on the figure, and the subscripts

indicate partial differentiation. Here the torsion vectors Cuv are set

to zero. Also

1 - 3a + 2a
3

3a 2 - 2a
3

G - 2a2 + 3

-a2 + a3

The slope vectors received in TI and T2 are C I and C 2' and hence

are converted to CuCv by

Eu - (N1 - 1)r E1

Cv r (N2- 1)r 2

The code uses the following notation:

S Q(4,4,3)

u,v X(1,1), X(2,1)

217

2 2
u ,v 2 X(1,2), X(2,2)

3 3
u ,v X(1,3), X(2,3)

B(u),B(v) V(4,1), V(4,2)

S B T(v) QB(3,4)

36. CORPAR

This subroutine determines the two surface parametric(splirie)

coordinates of the points on a surface spline that are closest to the

points received in the argument array R(3,Nl,N2), the dimensions N1,N2

also being received as arguments. The spline is received in SUR(3,

NI1,NI2,0:3) in COMMON/SPLINE/. The number of points on the spline,

NI1 ,N12, are received through equivalence with POINTSI(2) in COM-

MON/PAR/. The two spline coordinates of each point located on the

spline surface are returned in R(2,Nl,N2).

With t the position vector of a general point on the spline sur-

face, and a that of a certain point in R(3,N1,N2), the point on the

spline surface that is closest to fl is obtained by minimizing 18 - C1"

This occurs where

It - u It - l - 0

with u,v the spline coordinates on the surface.

The two equations to be solved for the two spline coordinates u,v

are thus

(R- r) r u 0

(R r) r v 0

218

This is done as follows.

The full spline coordinates of a point on the surface are El + U,

2 + v, where varies from 1 to NIl, and &2 from I to N12, with u,v on

the range 0-1:

(Nil, N12)

(1,1

Tt Is thus first necessary to locate the cell within which the desired

closest point C lies. To this end, the surface is swept in ever expand-

ing squares centered on a mid-point on the surface to determine the grid

point C0 on the surface that is closest to the point B. (These

'squares' are actually limited by the section edges, of course, and

hence may become rectangles.):

219

(II, I2) D

The desired point then must lie in one of the four cells adjacent to

th.s point. Therefore the dot products of the vector -Owith Uuand

Cat C0 are calculated, and the cell over which les is determined

from the signs of these dot products:

qu.adrantpit

The splne coefficients for the cell indicated are then set in

S(4,,) as in Appendix F, 5s) that a general postion vector' on this

cell is gven by

DI TR

r(u,v) B(u) S B(v)

with B given in Appendix
F. The equations to be solved for u,v are then

220

• • .. .i || I I I IIIIII

F1(u,v) - [R - B(U) S B Tv)] [B(u) S BT(v)] 0

F2(u,v) = [R - B(u) S B T(v)] • [B(u) S B T'(v)] 0

These are solved by Newton iteration defined by

dF
q= Aq -F

where

q= , F=[
v ~F2-

and the 2x2 matrix, dF/dq = J(2,2), is given by

J=2 2 . F 1 u
Fl ,]

J(2,2) LI: F2]

with

1i = (R- BSB • (B"SB T) - B'SBT 2
u

F1 = F2 u (R- BSB T) T (B'SB ') - (BSB T ') (B'SB)
V U

2V - (R- BSB) (BSB T)- IBSB r ' 2

The co' ses t' lollowing notation:

S : .3)

i,, v : X1,X2

B(u), B(v) : G1(4), G2(4)

8'(u), BI(v) :2GPI(2), GP2(4)

221

8"(u), B"1(v) : GPPI(4), GPP2(4)

Q BT(v) QG2(3,4)

Q BT' (v) QGP2(3,4)

Q B1() W QGPP2(3,4)

C(u'v) : V1(3)

B S BT V2(3)

B S BT ' V3(3)

B" S BT t V4(3)

B' S BT V5(3)

B S BT V6(3)

Fl ,F2 F1 ,F2

FluFlv : FII ,F12

F2uF2v F21,F22

- r) •r, (R - rO) r DOT1,DOT2
-o ru - -0 -v

In addition, the grid coordinates of the point [O are Cl,C2, and the

signs of the dot products are Li,L2.

37. TANPAR

This subroutine generates the derivatives of the spline coordinates

from slope vectors received in the argument array T(3,Nl,N2) at the

NlxN2 set of points defined by the surface parametric(spline) coordi-

nates received in the argument array R(2,Nl,N2). The values Ni and N2

are also received as arguments. The surface spline is received in the

array SUR(3,NIl,NI2,0:3) in COMMON/SPLINE/.

222

The grid coordinates of the cell on the surface within which the

point lies are first determined as the integer parts of the two coordi-

nates received in R. The spline coordinates u,v (which vary on the

range 0-1) are then the difference between the values in R and these

integer values. Since the Cartesian coordinates of a general point on

the spline surface are given by (Appendix F)

r - B(u) S B T(v)

we have

' T
r - B SB
-U

r =BS BT

The slope vectors received in T are , which are related to Cu and

Cv by

r - ruU + rvv

Then ICU 2] -u . ur .r
v uE r

determines u, and v,. These derivatives are returned in T(2,NI,N2).

The code uses the following notation:

u, v X1 ,X2

S Q(4,4,3)

B(u) and B'(u) : V(4,1)

223

B(v) and B'(v) V(4,2)

S BT and S BT I QB(3,4)

cu, v : Ti(3),T2(3)

ICu12 , C,12. _nr : D11,D22,D12

r r ccv C* r DOT1,DOT2

38. PARCOR

This subroutine generates the Cartesian coordinates from surface

parametric(spline) coordinates by bi-cubic interpolation on the splilne.

The N1xN2 lattice of parametric coordinates Is received in the argument

array R(2,N1,N2), and its dimensions are received as the arguments

N1,N2. The surface spline is received in the array SUR(3,NII,NI2,0:3)

in COMMON/SPLINE/.

The grid coordinates of the cell on the surface within which the

point lies are first determined as the integer parts of the two coordi-

nates received in R. The spline coordinates u,v (which vary on the

range 0-I) are then the difference between the values in R and these

integer values. The Cartesian coordinates of the point on the spline

surface corresponding to the spline coordinates are then given by

(Appendix F)

r - B(u) S B T(v)

The code uses the following notation:

U,V XI,X2

S :Q(4,4,3)

224

B(u), B(v) . V(4,1), V(4,2)

S BT(v) QB(3,4)

39. SPLNSUR

This subroutine receives a surface(curve) in the argument array

R(3,Nl,N2), and its dimensions N1,N2 also as arguments, and returns the

surface spline in the array SUR(3,NI,N2,0:3) in COMMON/SPLINE/.

The spline array SUR(3,Nl,N2,) contains the Cartesian coordinates

of the points on the surface, with a 0 for the last subscript, and the

derivatives Cu, rv' ruv with 1,2,3 for the last subscript. The routine

transfers the Cartesian coordinates from R Into SUR(3,NI,N2,O) and then

calls SURSPL to calculate Cu, rv# and Euv.

40. SURSPL

This subroutine splines an N1xN2 surface as described in Appendix

G. The surface dimensions are received as arguments. The surface is

received in the array SUR(3,N1,N2,0). The routine transfers each curve

into CUR(3,N1 or N2,0). The routine calls CURSPL to spline each curve on

the surface, with the argument "QUAD" for quadratic ends when calculat-

ing Cu and Cv and with "SPECIF" for specified slopes at the ends when

calculating tuv" These derivatives are transferred from CUR(3,N1 or

N2,1) into SUR after each return from CURSPL.

225

41. CURSPL

This subroutine splines an NP-point curve as described in Appendix

G. The number of points, NP, on the curve is received as an argument,

and the curve is received as an argument, and the curve is received in

the array CUR(3,NP,O). The spline ends will have zero curvature(natural

spline) if the alphanumeric integer argument TYPE is equal to "NATURAL",

constant curvature for "QUAD", or specified slope for "SPECIF". In the

latter case the specified slope is received in CUR(3,1,1) and

CUR(3,NP,I). The derivative vectors are returned in CUR(3,NP,1).

The code uses the following notation:

CUR(3,NP,O)

CUR(3,NP,l)

F right hand side of Eq. (E-2)

AA . coefficient of *2 and aN-1 for i=2 and NP-i

BB coefficient of 43 and ZN-2 for i=2 and NP-I

2
~226

APPENDIX A

DISTRIBUTION FUNCTIONS

In general, Interpolation between r 1 at =O and r2 at E=I can be

written
(1)r() (i9 £2 +[1 -)] rI

1 I -1
where can be any function such that *(O)-0 and 0()=1. Here we have

taken 1i=I-0 and 2= The linear polynomial case is obtained here

with 0(4) - The function 0 in this form may contain parameters

which can be determined so as to match the slope at the boundary, or to

match interior points and slopes. (The in this appendix is one less

than the point index on the curve in the code, i.e., the points are

numbered from I to N as E varies from 0 to I, so that I-N-i.)

The interpolation function, 0, in this form is often referred to

as a "stretching" function, and the most widely used function has been

the exponential:

exp(t -1

exp(a) - 1

where a Is a parameter that can be determined to match the slope at a

boundary. Thus, since, from Eq. ()

227

r -2(2 - ' (3)

we can determine a from the equation

(r r2 -C' 1 a (4)
I exp(a)'-1

with (r)I specified.

The truncation error is strongly affected by the point distribu-

tion, and studies of distribution functions have been made in that re-

gard. The exponential, while reasonable, is not the best choice when

the variation of spacing is large, and polynomials are not suitable in

this case. The better choices are the hyperbolic tangent and the hy-

perbolic sine. The hyperbolic sine gives a more uniform distribution

in the immediate vicinity of the minimum spacing, and thus has less er-

ror in this region, but the hyperbolic tangent has the better overall

distribution (cf. Ref. 4,5). These functions are implemented as fol-

lows (following Ref. 4), with the spacing specified at either or both

ends, or a point in the interior, of a point distribution on a curve.

Let are length, s, vary from 0 to 1 as & varies from 0 to I:

s(O)=0, s(I)=1. Then let the spacing be specified at E-0 and =I:

sE(0) - Asl , s - As2 (5)

228

The hyperbolic tangent distribution is then constructed as follows.

First,

2
A - -- (6)

(7)
B - I AlAs -As

1 2

Then the following nonlinear equation is solved for 6:

sinh6 1 (8)
6 B '

The arc length distribution then Is given by

u(W) (9)
A + (I-A)u()

where 1 tanh[6()

u(W) t [1 + tanh(6) (10)

2

229

If this is applied to a straight line on which r varies from r0 to rI

we have for the point locations:

r0 + (r (11)

The points are then located by taking integer values of E:

= 0,1,2...,I

Clearly the arc length distribution, s(E), here is the function * of

Eq. (1).

Note that B is essentially the ratio of the specified spacing to

the linear spacing, I/I. If B is greater than unity, i.e. if the spe-

cified spacing exceeds the linear spacing, the hyperbolic functions all

revert to circular functions in all the relations of this appendix.

With the spacing As specified at only E-0, the construction pro-

ceeds as follows. First B is calculated from
(12)

B - IAs

and Eq. (8) is solved for 6. The arc length distribution then is given

by

tanh[A(- I)

S(+ 2 1 (13)
tanh(-P)

230

With the spacing specified only at t-I the procedure is the same, ex-

cept that Eq. (13) is replaced by

6tanh (A -1)

tanh (6)
2

If the spacing As is specified at only an interior point s - a, B

is again calculated from Eq. (12), and then 6 is determined as the so-

lution of

cosh6 - 1 + 1 2
Bs__2 0) (15)
06 (sinh 6

The value of at which s - a is obtained by solving the nonlinear

equation

X tanh-1(sinh 6 (16)
- + cosh 6 - 1
a

The arc length distribution then is given by

231

sinh[d(

s(nh(6)L) (17)

I

This last distribution is based on the hyperbolic sine. From

this, a distribution based on the hyperbolic sine with the spacing spe-

cified at one end can be derived. Here B is evaluated from Eq. (12),

and then 6 is determined as the solution of

sinh6 1
= (18)

The arc length distribution then is given by

sinh(64)
s(&) sinh 6 (19)

if the spacing is specified at C-0. With the specification at &=I, the

distribution is

sinh[6(1 -

s()= 1 sinh 6 (20)

232

APPENDIX B

CONIC SECTION CURVES

The equations for the conic-section curves in the x-y plane are

developed as follows. The code notation corresponds closely to that

used here.

1. Circle Y

x

r(e) - constant

2. Ellipse

x

The equation of an ellipse Is

2 2
2+ 2,

a
2 b2

Substitution of x r cose and y - r sine yields

r(e) - [c6se sin2 ej-1/2

a2
b2

233

3. Circular arc AY

R L

The equation of a circle centered on the x-axis is

(x h) 2 + y2 _ A2

Evaluation at the intersections on the positive axes yields

(L- h)
2 A2

h2 + W2 A 2

so that

2 2

h= L- A

Substitution for x and y in terms of r and e then yields a quadratic

equation for r, the solution of which is

rCe) -b + b- c
2

234

wi thi

b -2h rnose

h2 A2

4I. Elliptical arc

The equation for an ellipse with its major axis on the x-axis is,

with e the eccentricity,

2 2 2
(x -h) I Y A2

1 -e

Ewdluatlon at the intersections on the positive axes yields

- 2 2

(L h) -A

2 W 22

1 -e2

from which

235

!2 .w 2
2

I -e

Substitution for x and y yields a quadra t ic equation for r with the

solution

-b + b2 4ac
2a

where

a = cos2 + sin 2e

1-e

b - -2h coso

c- h2 A2

5. Parabola
y

W
x

The equation of a parabola astride the x-axls is

a(x - L) + y2 0

Evaluation at the intersection on the positive y-axis yields

236

W
2

L

Substitution for x and y then produces a quadratic equation for r from

which

r(e) -b +
2 4ac
2a

with

a - sin 2

b = a cose

c =- W2

Y

6. Hyperbola

W r -
r

L

The equation for a hyperbola astride the x-axis is

2

(x - h)2 - _ A2

tan a

Evaluation at the intersections on the positive axes yields

237

(L -h)
2 = A2

h2 W 2 A2

tan a

which yield

h - + w
L tan 2a

2 W2

A h _ j
tan 2 a

Substitution for x and y then produces a quadratic equation for r with

the solution

r(e) b ac
2a

with

a - cos 2 -sn20

tan 2a

b - -2h cose

2 2
c- h -A

238

APPENDIX C

CONIC SECTION SURFACES

The equations for the conic -section surfaces are developed as

follows: (The code notation follows closely that used here.)

1. Sphere

xII

r(e,q) - constant

2. Ellipsoid

x

Y E

The equation for an ellipsoid is

2 2 2- I YL I K-. 1I

a2 b2 c 2

Substitution of x - r sine cos*, y - sine sin*, and z - r cose, where e

and 4 are analogous to latitude and longitude respectively, (with the

239

zvaxis as the polar axis) yields

(,)=[sin2 e cos 2 + sin 2 sin 2 + Cos 2 Ol I/2

2 2 b2 2 2

a2 c

3. Spherical segment

W L Z

Y

The equation of a sphere centered on the z-axis is

2 2 2 2

(z - h) A

Evaluation at the intersections on the positive axes gives

2 2 2

(L .- h)2 A2

W2 + h 2 -A
2

from which

A - (L W2)

h= L - R

Substitution of x,y, and z in terms of 9 and J then yields a quadratic

equation for r, the solution of which is

240

-b c - 4c

with

b - -2h cosO

2 2

4. Ellipsoidal segment

x

A L Z

y

The' equation for an ellipsoid with its major axis on the z-axis

is, with e the eccentricity in the x-z plane,

2 2 (z - h)2
x + .Y + - 1
a2 B2 Y2

Evaluation at the intersections on the positive axes yields

2 2
(L - h) - y

241

A 2 h 2

2 2
2 + h

2

g2 2

from which

2 2 2

B h 2 +]

1-e
2)

A

1-2

_ h__
2

B

L(1-e)

2 A

where e is the eccentricity in the x-z plane: -yvr1-e . Substituton

for x,y, and z yields a quadratic equation for r with the solution

Yb + +b2 - 4ac

1 ,h22a

with

a 2 b b2 52

242

aB i l H I I l | I | Il i l l

b 2h cose

h 21

Y2

5. Elliptic Cone

X1z

2 2

lTen eqatio the inelti onte woititse axes yi e-xii

A 22

a2 2

2

B 20
82

Ia

so that

h-L

243

Aa L

B
L

Substitution for x,y, and z then produces a quadratic equation for r,

the solution of which is

-b + b - 4ac
2a

with

cos 2 * sin2 2e 2
a 2 in e cose

b - 2h cose

c - - h2

6. Elliptic paraboloid

xz

y

The equation of an elliptic paraboloid astride the ziaxis is

244

2 2x2+ L+ (z - h) - 0

2 a2

Evaluation at the intersections on the positive axes yields

L- h= 0

A2
-L= 0

2

2

which gives

h= L

A

VE

B

Substitution for x,y, and z gives a quadratic equation for r which

produces

+ /b2 4ac
r(e, p) -2a

with

245

,,, i I I I I I I IMEN

22

b cosO

246

APPENDIX D

CUBIC SPACE CURVE

The curve is generated as a cubic polynomial:

C - CO + ro& + a&2 + 3
0

where the subscript indicates values at the first end, where E-0.

Evaluation at the other end (-1) yields

L "r 0 + L0
+ a + b

I I

Lj ro + 2a + 3b

Then

t I

(i -r 0)
2r0 - r

l I l

:-0 * r, -1(r, -r C)

247

APPENDIX E

RADIUS OF CURVATURE

The unit tangent, T, to a curve is given by the derivative of the

position vector with respect to arc length, s:

r
-s

The principal normal, N, then is given by

where K is the curvature. Now

Irf s 2 r - r (rs * rss)

ls3

and then, by an Identity,

- r x r,.J

so that the radius of curvature is given by

1 Its x si

248

APPENDIX F

* SURFACE(CURVE) SPLINE

The spline coordinates of a point on an N1xN2 surface(curve) are

12 1 2+u and F2+v, where E ,E are the integer indices of a grid point

varying as F1 1,2,--,N1 and 2-1,2,x-,N2. Thus u,v vary on the range

0-I:

1,1(Ni, N2)

" 0,0

The Cartesian coordinates of a general point on the cell forward of

1 ,2
are given by

r(u,v) - B(u) S B T(v)

where

r(0,0) r(0,1) rV(0,0) rv(0,1)

S(4,4,_) - r(1,0) r(1,1) rv (1,0) r v(1,1)

r (0,0) ru (0,1) r uv(0,0) r uv (0,1)

r (1,0) r u(1,1) ruV (0,1) r uv(1,1)

with the first subscript running down the columns, and the second

across the rows. (The last subscript indicates the Cartesian compo-

nent.) The parantheses refer to the corners indicated on the figure

above, and the subscripts indicate partial differentiation. Also

249

- 3a2+2a

2~ _ 32 3
B~ 3 .2a 3

a - 2a 2+ a

2 +a3

For a curve, S contains only the top row and

r(U) - S B(u)

250

APPENDIX G

SPLINE

The set of grid points r(E), --1,2,--,N, is splined with the cur-

vilinear coordinate & as the parameter. Thus on the interval E.<

s.+1, the curve i: given by the cubic polynomial
11 u

C(u) - s i(1-u) 3 + 6i+3

(r)(1 -u) + -)u (1)
-i -1 - +1 6 -1+1(

where s = r and 0 < u < 1, i.e., E i + u, andr r) +I

r(+1), etc.

The second derivatives are determined by the tridiagonal solution

of

i + 4si + si+l ' 6(I+ 2r + r i) (2)

for i-2,3,--,N-1. The end values are determined in one of three ways:

(1) zero curvature (natural spline):

1 N

(2) constant curvature (quadratic ends):

2, 2 2 2 - 13

-N -N-i - !N-2

(3) specified slopes:

251

Yr - El 3g,

s -3(r - r) 3 - s
sN -N -N-i 31 N 2 -N-1

where g = T

In the first case above, Eq. (2) is replaced by the following

equations for 1=2 and N-i:

4s2 + s3 = 6(r3 - 2r2 + r I)

4sN-i + SN-2 -6(rN -2rN-i + rN-2)

while in the second case

6s2 = 6(r 3 2r2 + rI)

6sN -1 -6(rN 2 N_- + N_2)

and in the third case

7s2 + S a 6(r 3 - 2r2 + + 3g, 3(r

7 = 6 (rN - 2r N + rN -2) " + 3 (rN N - 1 + ")
SN-1 + SN-2 N - + 3 N-N --N2 +NN2

The slopes, S = r , are given by

I (251 2 -([+1 i I) 12 T -1+1 fiI

252

APPENDIX H

iNEWTON ITERATIUN FOR INTERSECTION

The intersection of a curve spline with a surface spline is deter-

mined as follows.

The sp, ine coordinate on a given interval on the curve is w, and

those for a given interval on the surface are u,v. All of these vary on

the range 0-1. The spline coefficients for the interval on the surface

are set in S(4,41,3) as (cf. Ref. 3)

"r(0,0) r(0,1) rv(O,O) Lv (0,1)"

S(4,4, _) r (I,0) r(I,1) r (1,0) r (1,1)

ru(0,0) ru(0,1) u(0,0) ru(0,1)

Lu (1,0) Lu (1,1) uv (1,0) uv (1,1)

with the first subscript running down the columns, and the second across

the rows. (The last subscript indicates the Cartesian component.) The

parentheses refer to the corners as indicated on the figure above, and

the subscripts indicate partial differentiation. Similarly, the spline

coefficients for the interval on the curve are set in C(f,3) as

c(4,_) = (1(0) r(1) r (0) r(1))

a point on the surface spline is then given by

253

C(u,v) - B(u) S B T(v)

where

1 3a2 + 2a 3

B(a) 3a2 2a 3

a- 2 2 + a 3

-a
2 + a 3

(In subroutine INTSEC, the notation Q,QC is used for S,C; and the nota-

tion X1,X2,XC is used for u,v,w; and G1(4), G2(4), GC(4) is used for

B(u), B(v), B(w).) Similarly, a point on the curve spline is given by

r(w) = C B(w)

The three values u,v,w of the intersection point are determined as

the solution of r(w) = r(u,v), or

F(uv,w) - B(u) S B T(v) - C B(w) - 0

The Newton iteration then is defined by

dF

dAq -F

where

q =

dF

and the 3x3 matrix -= J(3,3) is given by

Fu B'(u) S B T v)

J(_,3) [F J B(u) S BT' (v)

Fw- -C BIN()

In subroutine INTSEC the following notation is used:

254

u,v,w XJ,X2,XC

r(u,v) :RS(3)

r~w) :RC(3)

F :F(3)

J DF(3,3)

FuFpF w:R1(3), R2(3). R3(3)

B'(u), 8'(v), B'(w): GP1('J), GP2('I), GPCUI)

Q B (v) :QG2(3,4)

Q B T'Cv) :QGP2(3,4)

255

REFER ENC ES

1. GORDON, WILLIAM J. and THIEL, LINDA C., "Transfinite Mappings and
Their Application to Grid Generation", Numerical Grid Generation,

Joe F. Thompson, (Ed.), North-Holland, 1982.

2. THOMPSON, J.F., WARSI, Z.U.A., and MASTIN, C. W., Numerical Grid

Generation: Foundations and Applications, North-Holland, 1985.

3. FAUX, I.D. and PRATT, M.J., Computational Geometry for Design and
Manufacture, Ellis Horwood, 1979.

4. VINOKUR, MARCEL, "On One-Dimensional Stretching Functions for
FiniteeDifference Calculations", Journal of Computational Physics,
50, 215, 1983.

5. THOMPSON, J.F., and MASTIN, C. WAYNE, "Order of Difference
Expressions on Curvilinear Coordinate Systems", Advances in Grid
Generation, FED-Vol. 5, Ed. K.N. Ghia and U. Ghia, ASME Applied
Mechanics, Bioengineering, and Fluids Engineering Conference,
Houston, 1983.

256

